337 research outputs found

    Multi-scale Modelling of Natural Composites Using Thermodynamics-Based Artificial Neural Networks and Dimensionality Reduction Techniques

    Get PDF
    Modelling natural composites, as the majority of real geomaterials, requires facing their intrinsic multiscale nature. This allows to consider multiphysics coupling occurring at the microscale, then reflected onto the macroscopic behavior. Geotechnics is constantly requiring reliable constitutive models of natural compolve large-scale engineering problems accurately and efficiently. This need motivates the contribution. To capture in detail the macroscopic effects of microssites to socopic processes, many authors have developed multi-scale numerical schemes. A common drawback of such methods is the prohibitive computational cost. Recently,Machine Learning based approaches have raised as promising alternatives to traditional methods. Artificial Neural Networks – ANNs – have been used to predict the constitutive behaviour of complex, heterogeneous materials, with reduced calculation costs. However, a major weakness of ANN is the lack of a rigorous framework based on principles of physics. This often implies a limited capability to extrapolate values ranging outside the training set and the need of large, high-quality datasets, on which performing the training. This work focuses on the use of Thermodynamics-based Artificial Neural Networks – TANN – to predict the constitutive behaviour of natural composites. Dimensionality reduction techniques – DRTs – are used to embed information of microscopic processes into a lower dimensional manifold. The obtained set of variables is used to characterize the state of the material at the macroscopic scale. Entanglement of DRTs with TANN allows to reproduce the complex nonlinear material response with reduced computational costs and guarantying thermodynamic admissibility. To demonstrate the method capabilities an application to a heterogeneous material model is presented

    Complex band structure and plasmon lattice Green's function of a periodic metal-nanoparticle chain

    Full text link
    When the surface plasmon resonance in a metal-nanoparticle chain is excited at one point, the response signal will generally decay down the chain due to absorption and radiation losses. The decay length is a key parameter in such plasmonic systems. By studying the plasmon lattice Green's function, we found that the decay length is generally governed by two exponential decay constants with phase factors corresponding to guided Bloch modes and one power-law decay with a phase factor corresponding to that of free space photons. The results show a high level of similarity between the absorptive and radiative decay channels. By analyzing the poles (and the corresponding residues) of the Green's function in a transformed complex reciprocal space, the dominant decay channel of the real-space Green's function is understood.Comment: 19 pages, 3 figure

    Mie resonances and bonding in photonic crystals

    Full text link
    Isolated dielectric spheres support resonant electromagnetic modes which are analogous to electronic orbitals and, like their electronic counterparts, can form bonding or anti-bonding interactions between neighbouring spheres. By irradiating the system with light at the bonding frequency an attractive interaction is induced between the spheres. We suggest that by judicious selection of bonding states we can drive a system towards a desired structure, rather than rely on the structure dictated by gravitational or Van der Waals forces, the latter deriving from the zero point energy population of a state.Comment: Minor changes in text, of explanatory nature. 6 pages, Latex, 6 figures, accepted by Europhysics Letter

    Work in progress — Role of faculty in promoting lifelong learning: Initial findings

    Get PDF
    Calls for educational reform emphasize the need for student-centered learning approaches that foster lifelong learning. To be a lifelong learner includes characteristics consistent with those of self-directed learners, such as being curious, motivated, reflective, analytical, persistent, flexible, and independent. Instructor support of students’ self-directed learning (SDL) development relies on understanding and balancing these factors in the classroom. Engineering educators play a critical role in influencing outcomes related to SDL through their design of courses that support students’ transitions from controlled to autonomous learning behaviors. This study will examine a variety of engineering courses and pedagogical approaches. Each will be characterized using instructor course information, recorded observations of instructorstudent and student-student interactions, student and instructor responses to surveys, and focus groups. Finally, the students’ capacity for SDL will be measured using the Motivated Strategies for Learning Questionnaire. This approach should provide for rich, contextualized descriptions of what instructors and learners do, how instructors and students relate to each other, and how students view their classrooms. This work-in-progress paper will describe our initial work in this multiyear study

    Scattering of elastic waves by periodic arrays of spherical bodies

    Full text link
    We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting of non-overlapping elastic spheres, characterized by Lam\'e coefficients which may be complex and frequency dependent, arranged periodically in a host medium with different mass density and Lam\'e coefficients. We view the crystal as a sequence of planes of spheres, parallel to and having the two dimensional periodicity of a given crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane. The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness. We demonstrate the efficiency of the method by applying it to a specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press

    A simple formula for the L-gap width of a face-centered-cubic photonic crystal

    Get PDF
    The width △L\triangle_L of the first Bragg's scattering peak in the (111) direction of a face-centered-cubic lattice of air spheres can be well approximated by a simple formula which only involves the volume averaged ϵ\epsilon and ϵ2\epsilon^2 over the lattice unit cell, ϵ\epsilon being the (position dependent) dielectric constant of the medium, and the effective dielectric constant ϵeff\epsilon_{eff} in the long-wavelength limit approximated by Maxwell-Garnett's formula. Apparently, our formula describes the asymptotic behaviour of the absolute gap width △L\triangle_L for high dielectric contrast δ\delta exactly. The standard deviation σ\sigma steadily decreases well below 1% as δ\delta increases. For example σ<0.1\sigma< 0.1% for the sphere filling fraction f=0.2f=0.2 and δ≥20\delta\geq 20. On the interval δ∈(1,100)\delta\in(1,100), our formula still approximates the absolute gap width △L\triangle_L (the relative gap width △Lr\triangle_L^r) with a reasonable precision, namely with a standard deviation 3% (4.2%) for low filling fractions up to 6.5% (8%) for the close-packed case. Differences between the case of air spheres in a dielectric and dielectric spheres in air are briefly discussed.Comment: 13 pages, 4 figs., RevTex, two references added. For more info see http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Onset of magnetism in B2 transition metals aluminides

    Full text link
    Ab initio calculation results for the electronic structure of disordered bcc Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6) alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl, NiAl) phases with point defects are presented. The calculations were performed using the coherent potential approximation within the Korringa-Kohn-Rostoker method (KKR-CPA) for the disordered case and the tight-binding linear muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied in particular the onset of magnetism in Fe-Al and Co-Al systems as a function of the defect structure. We found the appearance of large local magnetic moments associated with the transition metal (TM) antisite defect in FeAl and CoAl compounds, in agreement with the experimental findings. Moreover, we found that any vacancies on both sublattices enhance the magnetic moments via reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are ferromagnetically ordered for the whole range of composition studied, whereas Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in Phys.Rev.

    Primary angiosarcoma of the lung and pleura

    Get PDF
    A 46 year old male smoker was admitted for severe continuing hemoptysis. Chest-X-rays and chest computed tomography revealed nodular infiltrates and bilateral hemothorax. Fiberoptic bronchoscopy resulted to non-diagnostic cytological and microbiological findings. Open lung and pleural biopsies after right thoracotomy revealed epithelioid angiosarcoma and further staging assessment showed secondary brain and liver foci. The patient received several courses of chemotherapy but he died one month later. The clinical, radiological, pathological, histochemical and therapeutic aspects of the disease are discussed. Angiosarcoma, a rare tumour with poor prognosis should be taken into consideration in the differential diagnosis of hemoptysis

    Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation

    Get PDF
    We have used the locally self-consistent Green's function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine the Madelung potential energy of a random alloy in the single-site mean field approximation which makes the conventional single-site density-functional- theory coherent potential approximation (SS-DFT-CPA) method practically identical to the supercell LSGF method with a single-site local interaction zone that yields an exact solution of the DFT problem. We demonstrate that the basic mechanism which governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short-ranged. In the atomic sphere approximation, this screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-filed approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure

    Resonant Visible Light Modulation with Graphene

    Get PDF
    Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devices capable of controlling the light phase and intensity at gigaherts (and even terahertz) speeds in those spectral ranges. However, this problem remains largely unsolved, despite recent advances in the use of quantum wells and phase-change materials for that purpose. Here, we explore an alternative solution based upon the remarkable electro-optical properties of graphene. In particular, we predict unity-order changes in the transmission and absorption of vis-NIR light produced upon electrical doping of graphene sheets coupled to realistically engineered optical cavities. The light intensity is enhanced at the graphene plane, and so is its absorption, which can be switched and modulated via Pauli blocking through varying the level of doping. Specifically, we explore dielectric planar cavities operating under either tunneling or Fabry-Perot resonant transmission conditions, as well as Mie modes in silicon nanospheres and lattice resonances in metal particle arrays. Our simulations reveal absolute variations in transmission exceeding 90% as well as an extinction ratio >15 dB with small insertion losses using feasible material parameters, thus supporting the application of graphene in fast electro-optics at vis-NIR frequencies.Comment: 17 pages, 13 figures, 54 reference
    • …
    corecore