75 research outputs found

    Relations between Effects and Structure of Small Bicyclic Molecules on the Complex Model System Saccharomyces cerevisiae

    Get PDF
    The development of compounds able to modify biological functions largely took advantage of parallel synthesis to generate a broad chemical variance of compounds to be tested for the desired effect(s). The budding yeast Saccharomyces cerevisiae is a model for pharmacological studies since a long time as it represents a relatively simple system to explore the relations among chemical variance and bioactivity. To identify relations between the chemical features of the molecules and their activity, we delved into the effects of a library of small compounds on the viability of a set of S. cerevisiae strains. Thanks to the high degree of chemical diversity of the tested compounds and to the measured effect on the yeast growth rate, we were able to scale-down the chemical library and to gain information on the most effective structures at the substituent level. Our results represent a valuable source for the selection, rational design, and optimization of bioactive compounds

    Profile of Bacterial Infections in COVID-19 Patients: Antimicrobial Resistance in the Time of SARS-CoV-2

    Get PDF
    SIMPLE SUMMARY: Since the beginning of COVID-19 pandemic, no specific drugs have been available to treat the SARS-CoV-2 infection, therefore antibiotics have been often used both for prophylactic and therapeutic purposes. Their wide use, though, is known to contribute to the emergence of antimicrobial resistance. Aiming at evaluating the impact of the COVID-19 pandemic on the distribution and characteristics of bacterial infections, and on the frequency of antimicrobial resistance, we investigated the microbial strains identified through laboratory tests on clinical specimens from COVID-19 and non-COVID-19 patients accessing an Italian tertiary hospital over nearly one year. We highlighted that COVID+ patients bore a significantly higher number of bacterial species. Eight out of the 100 species identified were isolated exclusively from COVID+ and most of them are known to establish infections only in immunocompromised patients. Resistance to every tested antibiotic was seen in 8.3% of the isolates with a correlation with the positivity to COVID, but neither all COVID+ or COVID− isolates showed characteristic responses to the tested antibiotics. The predicted increase of antibiotic resistance is not observable yet, but the higher frequency of multi-resistant COVID+ isolates suggests that it is actually occurring, further calling for the definition of alternative treatments of COVID-19 infections. ABSTRACT: The global onset of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infections happened suddenly, hence imposing a rapid definition of effective therapeutic approaches. Antibiotics were included among the prophylactic agents because of both the similarity between SARS-CoV-2 and atypical pneumonia symptoms, and the immune-modulating and anti-inflammatory properties of such drugs. Although, this approach could exacerbate the emergence of antimicrobial resistance. To evaluate the impact of the COVID-19 pandemic on the spread and characteristics of bacterial infections, as well as on the frequency of antimicrobial resistance, we investigated and compared clinical bacterial strains isolated in an Italian hospital from COVID-19 patients and non-COVID-19 patients during and before the COVID-19 outbreak. Data clearly indicate the impact of the COVID-19 pandemic on bacterial infections: not only some bacterial species were found in either COVID-19 positive or in COVID-19 negative patients, but isolates from COVID-19 patients also showed higher levels of antimicrobial resistance. Nevertheless, despite some bacterial species were isolated only before or over the pandemic, no differences were observed among the antimicrobial resistance levels. Overall, these results recapitulate the current situation of microbial infections and could also provide an overview of the impact of COVID-19 on bacterial pathogens spread and resistance

    Diffusion of individual birds in starling flocks

    Get PDF
    Flocking is a paradigmatic example of collective animal behaviour, where decentralized interaction rules give rise to a globally ordered state. In the emergence of order out of self-organization we find similarities between biological systems, as bird flocks, and some physical systems, as ferromagnets. In both cases, the tendency of individuals to align to their neighbours gives rise to a polarized state. There is, however, one crucial difference: the interaction network within an animal group is not necessarily fixed in time, as each individual moves and may change its neighbours. Therefore, the dynamical interaction mechanism in biological and physical system can be quite different, not only due to the gross disparity in the complexity of the individual entities, but also because of the potential role of inter-individual motion. To assess the relevance of this mechanism it is necessary to gain quantitative experimental information about how much individuals move with respect to each other within the group. Here, by using data from field observations on starlings, we study the diffusion properties of individual birds within a flock and investigate the effect of diffusion on the dynamics of the interaction network. We find that birds diffuse faster than Brownian particles (superdiffusion) and in a strongly anisotropic way. We also find that neighbours change in time exclusively as a consequence of diffusion, so that no specific mechanism to keep one's neighbours seems to be enforced. Finally, we study the diffusion properties of birds at the border of the flock. We find that these individuals remain on the border significantly longer than what would be expected on the basis of a purely diffusional model, suggesting that there is a sort barrier a bird must cross to make the transition from border to interior of the flock.Comment: 22 pages, 10 figure

    Population genomics reveals evolution and variation of Saccharomyces cerevisiae in the human and insects gut

    Get PDF
    The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees, and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the host's gut as a potential reservoir for yeast adaptation. Here we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites. Phylogenetic analysis on 12 microsatellite loci and 1,715 combined CDSs from whole‐genome sequencing revealed three subclusters of HG strains with further evidence of clonal colonization within the host's gut. The presence of such subclusters was supported by other genomic features, such as copy number variation, absence/introgressions of CDSs and relative polymorphism frequency. Functional analysis of CDSs specific of the different subclusters suggested possible alterations in cell wall composition and sporulation features. The phenotypic analysis combined with immunological profiling of these strains further showed that sporulation was related with strain‐specific genomic characteristics in the immune recognition pattern. We conclude that both genetic and environmental factors involved in cell wall remodeling and sporulation are the main drivers of adaptation in S. cerevisiae populations in the human gut

    Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract

    Get PDF
    The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C), to acidic and oxidative stress and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals’ life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics-based approaches to fungal gut populations

    SARS-CoV-2 infection predicts larger infarct volume in patients with acute ischemic stroke

    Get PDF
    Background and purpose: Acute ischemic stroke (AIS) is a fearful complication of Coronavirus Disease-2019 (COVID-19). Aims of this study were to compare clinical/radiological characteristics, endothelial and coagulation dysfunction between acute ischemic stroke (AIS) patients with and without COVID-19 and to investigate if and how the SARS-CoV-2 spike protein (SP) was implicated in triggering platelet activation. Methods: We enrolled AIS patients with COVID-19 within 12 h from onset and compared them with an age- and sex-matched cohort of AIS controls without COVID-19. Neuroimaging studies were performed within 24 h. Blood samples were collected in a subset of 10 patients. Results: Of 39 AIS patients, 22 had COVID-19 and 17 did not. Admission levels of Factor VIII and von Willebrand factor antigen were significantly higher in COVID-19 patients and positively correlated with the infarct volume. In multivariate linear regression analyses, COVID-19 was an independent predictor of infarct volume (B 20.318, Beta 0.576, 95%CI 6.077-34.559; p = 0.011). SP was found in serum of 2 of the 10 examined COVID-19 patients. Platelets from healthy donors showed a similar degree of procoagulant activation induced by COVID-19 and non-COVID-19 patients' sera. The anti-SP and anti-FcγRIIA blocking antibodies had no effect in modulating platelet activity in both groups. Conclusions: SARS-CoV-2 infection seems to play a major role in endothelium activation and infarct volume extension during AIS

    Fusion Hindrance and Pauli Blocking in 58Ni + 64Ni

    Get PDF
    58Ni +64Ni is the first case where the influence of positive Q-value transfer channels on sub-barrier fusion was evidenced, in a very well known experiment by Beckerman et al., by comparing with the two systems 58Ni + 58Ni and 64Ni+64Ni. Subsequent measurements on 64Ni + 64Ni showed that fusion hindrance is clearly present in this case. On the other hand, no indication of hindrance can be observed for 58Ni + 64Ni down to the measured level of 0.1 mb. In the present experiment the excitation function has been extended by two orders of magnitude downward. The cross sections for 58Ni + 64Ni continue decreasing very smoothly below the barrier, down to '1 µb. The logarithmic slope of the excitation function increases slowly, showing a tendency to saturate at the lowest energies. No maximum of the astrophysical S -factor is observed. Coupled-channels (CC) calculations using a Woods-Saxon potential and includinginelastic excitations only, underestimate the sub-barrier cross sections by a large amount. Good agreement is found by adding two-neutron transfer couplings to a schematical level. This behaviour is quite different from what already observed for 64Ni+ 64Ni (no positive Q-value transfer channels available), where a clear low-energy maximum of the S -factorappears, and whose excitation function is overestimated by a standard Woods-Saxon CC calculation. No hindrance effect is observed in 58Ni+ 64Ni in the measured energy range. This trend at deep sub-barrier energies reinforces the recent suggestion that the availability of several states following transfer with Q>0, effectively counterbalances the Pauli repulsion that, in general, is predicted to reduce tunneling probability inside the Coulomb barrier
    corecore