272 research outputs found

    Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    Get PDF
    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis

    Wavelength Division Multiplexing with Thermally Fixed Volume Phase Holograms in Photorefractive Lithium Niobate Crystals

    No full text
    Wavelength division multiplexing (WDM) is essential for further enhancement of the transmission capacities of optical telecommunication systems. Key devices in WDM networks are multiplexing/demultiplexing components, which enable the combination/separation of several carrier waves with different wavelengths for the purpose of simultaneous transmission through one optical fibre. These components can be realized using Bragg diffraction from volume holographic gratings. Especially reflection holograms provide a pronounced wavelength selectivity which makes them attractive for free-space WDM applications. Holograms can be stored permanently in photorefractive lithium niobate crystals by the method of Thermal Fixing. Heating of the crystal during or after the recording process and subsequent development by homogeneous illumination at room temperature create nonvolatile holograms. The recording and development processes of Thermal Fixing in iron- and copper-doped lithium niobate crystals were investigated. Macroscopic Gaussian-shaped intensity patterns were used to analyse the origin of the fixing mechanism. Spatially resolved absorption measurements were performed to determine the concentration profiles of electron traps (Fe II/III) and protons. Results of computer simulations were compared with experimental results, which showed that protons can be found to work as compensators during hologram recording at temperatures around 180 degree C. Nevertheless thermal fixing without protons was possible, another compensation mechanism stood in. The obtained refractive-index changes were due to the electro-optic effect, other contributions could be neglected. With this detailed knowledge about thermal fixing, a two-channel demultiplexing unit was built by superposition of two thermally fixed reflection holograms in an iron-doped lithium niobate crystal. For this purpose a special two-beam interference setup with precisely adjustable writing angles was arranged in a vacuum chamber to eliminate thermally induced phase disturbances of the holographic recording procedure. Continuous development of the holograms by incoherent light was necessary. In the dark, the enhanced dark conductivity of the crystal used gave rise to a hologram degradation within about one day. Large diffraction efficiencies were attained (intensity losses between 2.3 and 5.2 dB only) uilizing crystals with high-quality polished surfaces. The crosstalk supression of the realized demultiplexer was > 25 dB, which is comparable with the performance of other multiplexing techniques like fibre Bragg gratings or arrayed-waveguide gratings. The low polarization dependence of the demultiplexer can be improved by superposition of two holograms for each channel

    Mutations in WNT1 cause different forms of bone fragility

    Get PDF
    We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated ß-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. © 2013 The American Society of Human Genetics

    Improved measurement of CPCP violation parameters in Bs0J/ψK+KB_s^0\to J/\psi K^+K^- decays in the vicinity of the ϕ(1020)\phi(1020) resonance

    No full text
    The decay-time-dependent CPCP asymmetry in Bs0J/ψ(μ+μ)K+KB_s^0\to J/\psi(\to \mu^+\mu^-) K^+ K^- decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6fb16 {\rm fb}^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B_s^0 signal decays with an invariant K+KK^+ K^- mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B_s^0-Bs0\overline{B}_s^0 system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B_s^0 and B0B^0 meson decay widths, ΓsΓd\Gamma_s-\Gamma_d. The values obtained are ϕs=0.039±0.022±0.006\phi_s = -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024 ps1\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ~{\rm ps}^{-1} and ΓsΓd=0.0560.0015+0.0013±0.0014 ps1\Gamma_s-\Gamma_d = -0.056^{\:+\:0.0013}_{\:-\:0.0015} \pm 0.0014 ~{\rm ps}^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+KK^+K^- system and shows no evidence for polarization dependence.The decay-time-dependent CPCP asymmetry in Bs0J/ψ(μ+μ)K+KB^0_s\to J/\psi(\to \mu^{+}\mu^{-}) K^{+}K^{-} decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb1fb^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B^{0}_{s} signal decays with an invariant K+KK^{+}K^{-} mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B^0_s-Bˉs0\bar{B}^0_s system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B^0_s and B0B^0 meson decay widths, ΓsΓd\Gamma_s-\Gamma_d. The values obtained are ϕs= 0.039±0.022±0.006\phi_s = \ -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ps1^{-1} and ΓsΓd=0.00560.0015+0.0013±0.0014\Gamma_s-\Gamma_d = -0.0056 ^{+ 0.0013}_{-0.0015} \pm 0.0014 ps1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+KK^{+}K^{-} system and shows no evidence for polarization dependence

    Measurement of prompt D+D^+ and Ds+D^+_{s} production in pPbp\mathrm{Pb} collisions at sNN=5.02\sqrt {s_{\mathrm{NN}}}=5.02\,TeV

    No full text
    International audienceThe production of prompt D+D^+ and Ds+D^+_{s} mesons is studied in proton-lead collisions at a centre-of-mass energy of sNN=5.02\sqrt {s_{\mathrm{NN}}}=5.02\,TeV. The data sample corresponding to an integrated luminosity of (1.58±0.02)nb1(1.58\pm0.02)\mathrm{nb}^{-1} is collected by the LHCb experiment at the LHC. The differential production cross-sections are measured using D+D^+ and Ds+D^+_{s} candidates with transverse momentum in the range of 0<pT<14GeV/c0<p_{\mathrm{T}} <14\,\mathrm{GeV}/c and rapidities in the ranges of 1.5<y<4.01.5<y^*<4.0 and 5.0<y<2.5-5.0<y^*<-2.5 in the nucleon-nucleon centre-of-mass system. For both particles, the nuclear modification factor and the forward-backward production ratio are determined. These results are compared with theoretical models that include initial-state nuclear effects. In addition, measurements of the cross-section ratios between D+D^+, Ds+D^+_{s} and D0D^0 mesons are presented, providing a baseline for studying the charm hadronization in lead-lead collisions at LHC energies
    corecore