31 research outputs found
Shorter blooms expected with longer warm periods under climate change: an example from a shallow meso-eutrophic Mediterranean lake
AbstractSatellite data from the Climate Change Initiative (CCI) lakes project were used to examine the influence of climate on chlorophyll-a (Chl-a). Nonparametric multiplicative regression and machine learning were used to explain Chl-a concentration trend and dynamics. The main parameters of importance were seasonality, interannual variation, lake level, water temperature, the North Atlantic Oscillation, and antecedent rainfall. No evidence was found for an earlier onset of the summer phytoplankton bloom related to the earlier onset of warmer temperatures. Instead, a curvilinear relationship between Chl-a and the temperature length of season above 20°C (LOS) was found with longer periods of warmer temperature leading to blooms of shorter duration. We suggest that a longer period of warmer temperatures in the summer may result in earlier uptake of nutrients or increased calcite precipitation resulting in a shortening of the duration of phytoplankton blooms. The current scenario of increasing LOS of temperature with climate change may lead to an alteration of phytoplankton phenological cycles resulting in blooms of shorter duration in lakes where nutrients become limiting. Satellite-derived information on lake temperature and Chl-a concentration proved essential in detecting trends at appropriate resolution over time
D2.1 Report on analysis of the requirements for MONOCLE sensors including projection of cost-savings and stakeholder feedback. Deliverable report of project H2020 MONOCLE (grant 776480)
Requirements for MONOCLE sensors were analysed at the start of sensor development, particularly with regard to projected cost-savings in monitoring and specific stakeholder feedback. The main inputs from stakeholders were obtained from the MONOCLE water quality monitoring survey (D9.1) and are used here to define sensor-specific development priorities, particularly with respect to purpose, performance, cost and interoperability. This document guides both the initial development of new sensors and evolution of existing prototypes to higher technological readiness levels
Sentinel-2 remote sensing of Zostera noltei-dominated intertidal seagrass meadows
Accurate habitat mapping methods are urgently required for the monitoring, conservation, and management of blue carbon ecosystems and their associated services. This study focuses on exposed intertidal seagrass meadows, which play a major role in the functioning of nearshore ecosystems. Using Sentinel-2 (S2) data, we demonstrate that satellite remote sensing can be used to map seagrass percent cover (SPC) and leaf biomass (SB), and to characterize its seasonal dynamics. In situ radiometric and biological data were acquired from three intertidal meadows of Zostera noltei along the European Atlantic coast in the summers of 2018 and 2019. This information allowed algorithms to estimate SPC and SB from a vegetation index to be developed and assessed. Importantly, a single SPC algorithm could consistently be used to study Z. noltei-dominated meadows at several sites along the European Atlantic coast. To analyze the seagrass seasonal cycle and to select images corresponding to its maximal development, a two-year S2 dataset was acquired for a French study site in Bourgneuf Bay. The po-tential of S2 to characterize the Z. noltei seasonal cycle was demonstrated for exposed intertidal meadows. The SPC map that best represented seagrass growth annual maximum was validated using in situ measurements, resulting in a root mean square difference of 14%. The SPC and SB maps displayed a patchy distribution, influenced by emersion time, mudflat topology, and seagrass growth pattern. The ability of S2 to measure the surface area of different classes of seagrass cover was investigated, and surface metrics based on seagrass areas with SPC >= 50% and SPC >= 80% were computed to estimate the interannual variation in the areal extent of the meadow. Due to the high spatial resolution (pixel size of 10 m), frequent revisit time (<= 5 days), and long-term objective of the S2 mission, S2-derived seagrass time-series are expected to contribute to current coastal ecosystem management, such as the European Water Framework Directive, but to also guide future adaptation plans to face global change in coastal areas. Finally, recommendations for future intertidal seagrass studies are proposed
Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.
International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution
The CEOS Feasibility Study for an aquatic ecosystem imaging spectrometer
The Committee on Earth Observation Satellites (CEOS) response to the Group on Earth Observations System of Systems (GEOSS) Water Strategy developed under the auspices of the Water Strategy Implementation Study Team was endorsed by CEOS at the 2015 Plenary. As one of the actions, CSIRO has taken the lead on recommendation C.10: A feasibility assessment to determine the benefits and technological difficulties of designing a hyperspectral satellite mission focused on water quality measurements. More specifically this report is a highlevel feasibility assessment of the benefits and technological difficulties of designing a hyperspectral satellite mission focused on biogeochemistry of inland,
estuarine, deltaic and near coastal waters as well as mapping macrophytes, macroalgae , seagrasses and coral reefs at significantly higher spatial resolution than 250 m, which is the maximum spatial resolution of dedicated current aquatic sensors such as Sentinel3 and future planned aquatic sensors such as the Coastal Ocean Color Imager (COCI â 100 m res). Further, the GEO Community of Practice Aquawatch suggested that alternative
approaches, involving augmenting designs of spaceborne sensors for terrestrial and ocean colour applications to allow improved inland, near coastal waters and benthic applications, could offer an alternative pathway to addressing the same underlying science questions. Accordingly, this study also analizes the benefits and
technological difficulties of this option as part of the highlevel feasibility study
Satellite-assisted monitoring of water quality to support the implementation of the Water Framework Directive
The EU Water Framework Directive1 (WFD) is an ambitious legislation framework to achieve good ecological and chemical status for all surface waters and good quantitative and chemical status for groundwater by 2027.âA total of 111,062 surface waterbodies are presently reported on under the Directive, 46% of which are actively monitored for ecological status.âOf these waterbodies 80% are rivers, 16% are lakes, and 4% are coastal and transitional waters.âIn the last assessment, 4% (4,442) of waterbodies still had unknown ecological status, while in 23% monitoring did not include in situ water sampling to support ecological status assessment2.âFor individual (mainly biological) assessment criteria the proportion of waterbodies without observation data is much larger; the full scope of monitoring under the WFD is therefore still far from being realised.âAt the same time, 60% of surface waters did not achieve âgoodâ status in the second river basin management plan and waterbodies in Europe are considered to be at high risk of having poor water quality based on combined microbial, physical and physicochemical indicators3
A review on substances and processes relevant for optical remote sensing of extremely turbid marine areas, with a focus on the Wadden Sea
The interpretation of optical remote sensing data of estuaries and tidal flat areas is hampered by optical complexity and often extreme turbidity. Extremely high concentrations of suspended matter, chlorophyll and dissolved organic matter, local differences, seasonal and tidal variations and resuspension are important factors influencing the optical properties in such areas. This review gives an overview of the processes in estuaries and tidal flat areas and the implications of these for remote sensing in such areas, using the Wadden Sea as a case study area. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible. However, this requires sensors with a large ground resolution, algorithms tuned for high concentrations of various substances and the local specific optical properties of these substances, a simultaneous detection of water colour and land-water boundaries, a very short time lag between acquisition of remote sensing and in situ data used for validation and sufficient geophysical and ecological knowledge of the area. © 2010 The Author(s)
Spectra of a shallow sea-unmixing for class identification and monitoring of coastal waters
Ocean colour-based monitoring of water masses is a promising alternative to monitoring concentrations in heterogeneous coastal seas. Fuzzy methods, such as spectral unmixing, are especially well suited for recognition of water masses from their remote sensing reflectances. However, such models have not yet been applied for water classification and monitoring. In this study, a fully constrained endmember model with simulated endmembers was developed for water class identification in the shallow Wadden Sea and adjacent German Bight. Its performance was examined on in situ measured reflectances and on MERIS satellite data. Water classification by means of unmixing reflectance spectra proved to be successful. When the endmember model was applied to MERIS data, it was able to visualise well-known spatial, tidal, seasonal, and wind-related variations in optical properties in the heterogeneous Wadden Sea. Analyses show that the method is insensitive to small changes in endmembers. Therefore, it can be applied in similar coastal areas. For use in open ocean situations or coastal or inland waters with other specific inherent optical properties, re-simulation of the endmember spectra with local optical properties is required. However, such an adaptation requires only a limited number of local in situ measurements
Toward a General Theory of Organizing â Volume 1: Introducing the Network Field Model
There are three volumes in this body of work. In volume one, we lay the foundation for a general theory of organizing. We propose that organizing is a continuous process of ongoing mutual or reciprocal influence between objects (e.g., human actors) in a field, whereby a field is infinite and connects all the objects in it much like electromagnetic fields influence atomic and molecular charged objects or gravity fields influence inanimate objects with mass such as planets and stars. We use field theory to build what we now call the Network Field Model. In this model, human actors are modeled as point-like objects in the field. Influence between and investments in these point-like human objects are explained as energy exchanges (potential and kinetic) which can be described in terms of three different types of capital: financial (assets), human capital (the individual) and social (two or more humans in a network). This model is predicated on a field theoretical understanding about the world we live in. We use historical and contemporaneous examples of human activity and describe them in terms of the model. In volume two, we demonstrate how to apply the model. In volume 3, we use experimental data to prove the reliability of the model. These three volumes will persistently challenge the readerâs understanding of time, position and what it means to be part of an infinite field