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Project Description 

Funded by EU H2020 MONOCLE creates sustainable in situ observation solutions 

for Earth Observation (EO) of optical water quality in inland and transitional 

waters. MONOCLE develops essential research and technology to lower the cost of 

acquisition, maintenance, and regular deployment of in situ sensors related to 

optical water quality. The MONOCLE sensor system includes handheld devices, 

smartphone applications, and piloted and autonomous drones, as well as automated 

observation systems for e.g. buoys and shipborne operation. The sensors are 

networked to establish interactive links between operational Earth Observation (EO) 

and essential environmental monitoring in inland and transitional water bodies, 

which are particularly vulnerable to environmental change. 
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1. Executive Summary 
Requirements for MONOCLE sensors were analysed at the start of sensor development, particularly 

with regard to projected cost-savings in monitoring and specific stakeholder feedback. The main 

inputs from stakeholders were obtained from the MONOCLE water quality monitoring survey (D9.1) 

and are used here to define sensor-specific development priorities, particularly with respect to 

purpose, performance, cost and interoperability. This document guides both the initial development 

of new sensors and evolution of existing prototypes to higher technological readiness levels. 

2. Scope 
The data and conclusions in this report will be primarily used by MONOCLE sensor developers to 

ensure that sensors are fit-for-purpose and bring added value to the sensor network developed in 

the project. The wider audience for this report comprises sensor developers and manufacturers and 

practitioners taking water quality measurements or those interested in combining in situ and remote 

observations.  

3. Introduction 
One of the main goals in MONOCLE is to improve in situ components of the GEOSS and Copernicus 

programmes in optically complex waters, with new sensor technological developments across a 

range of innovative platforms. The range of MONOCLE sensors includes systems that are focussed on 

reaching the highest accuracy, to determine correspondence between remote (satellite) 

observations and in situ reference sties, and systems focussed on increasing the spatial coverage of 

the network at the lowest possible cost. The latter framework includes novel deployment techniques 

and the potential added value of sensors developed for citizen scientists. The two directions for 

development are not mutually exclusive.  
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4. Overview of MONOCLE sensors 
Eight MONOCLE sensor systems will be developed during the project. Their main features are 

summarized in Table 1. The sensor systems are fully described in D4.1 “Performance criteria for field 

testing ” (Riddick et al. 2018). 

Table 1. List of MONOCLE sensors and systems 

System Developer 

Priority Type  
(Accuracy / 
Spatial Coverage / 
low cost) 

Measurement 

HSP1 Peak Design Ltd Accuracy Global and diffuse spectral 
irradiance 

CLAM PML Accuracy / low 
cost 

Chl-a 

Sun tracking 
radiance platform 

PML Accuracy / spatial 
coverage 

Water-leaving reflectance under 
optimal viewing angles 

WISPStation Water Insight Accuracy Remote sensing reflectance (Rrs) 

Prosumer RPAS 
drone systems  

VITO / 
Sitemark 

Accuracy and 
detailed spatial 
coverage. Low-
cost cameras also 
considered 

Water-leaving reflectance, Total 
Suspended Matter (TSM) and 
Chlorophyll-a (Chl-a) 

iSPEX University of 
Leiden/DDQ 

Spatial coverage 
at low cost 

Aerosol optical thickness (AOT) 
and water colour (TBD) 

KdUino CSIC Low cost / spatial 
coverage  

Light attenuation coefficient (Kd) 

FreshWater 
Watch 

Earthwatch Spatial coverage 
(microscale) 

Water colour, turbidity and 
phosphate 
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5. Requirements for MONOCLE sensor systems 

5.1. User requirements 

Professional users (e.g. researchers and monitoring agencies) will pay particular attention to sensor 

performance in terms of measurement accuracy. While sensor cost versus functionality will in most 

cases ultimately determine the choice of sensor, the price bracket for sensors in this category is one 

or two orders of magnitude higher than for other users. The same principle generally applies to 

operational (deployment and maintenance) cost.  

On the other end of the user spectrum are individuals and organisations seeking to maximize spatial 

cover at the lowest sensor acquisition, deployment and maintenance cost.  

The following sections consider the optimization criteria for accuracy-oriented systems and 

cost/coverage oriented systems, respectively.  

5.1.1. Measurement requirements for systems focussed on accuracy 

The main measurement accuracy and precision parameters to target in ‘high-end’ MONOCLE 

systems targeting are summarized in Table 2. Target precision and accuracy for selected 

MONOCLE systems.  

Table 2. Target precision and accuracy for selected MONOCLE systems 

System Developer Measurement 
variable 

Target precision Target 
accuracy  

HSP1 Peak 
Design Ltd 

Global and diffuse 
spectral irradiance 

3% - 5%  5%  

CLAM PML Chl-a TBD <10% 

Sun tracking 
radiance 
platform 

PML Water-leaving 
reflectance under 
optimal viewing 
angles 

Optimal viewing angles: 1° or 
better  

<2° 

WISPStation Water 
Insight 

Remote sensing 
reflectance (Rrs) 

2% (depending on illumination 
and wave conditions)  

TBD  

Prosumer RPAS VITO / 
Sitemark 

Water-leaving 
reflectance,  total 
suspended matter 
and Chlorophyll-a 

TBD  TBD  
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5.1.2. Costs considerations in systems focussed on measurement accuracy 

A prominent goal in MONOCLE is to optimize the cost-efficiency of in situ sensors. Stakeholders were 

consulted about this aspect. The results collated from > 140 responses, mainly from practitioners in 

water quality monitoring, are detailed in Figure 1. 

 

Figure 1 Results from the questionnaire (Q4): “Increasing cost-efficiency in water quality monitoring can likely be 
achieved through:”. The most important aspects from the stakeholders has been highlighted in red 

The three most important factors to increase the cost-efficiency are: (a) reducing the cost of the 

sensor, (b) automate measurements and (c) increase maintenance intervals (which could be 

translated also as reducing the operational cost). Table 3  summarizes the target reduction costs, 

both for acquisition and operation, for sensors developed for high accuracy. 

Table 3. Acquisition and operational costs for highly accurate sensor systems 

System Acquisition cost 
bracket 

Operational costs Scope for cost-savings 

HSP1 €10k – €15k  Minimal Annual: periodic cleaning 
& desiccant replacement. 
Calibration: €500 at 2 years. Insure 
for value of €10k – €15k. 

The HSP1 delivers the same 
information as robotic sun 
photometers at 25% of the 
cost. 

CLAM €1 - €10k, depending 
on sensitivity options 

No calibration required. Regular 
maintenance will include cleaning. 
Drift/fouling detection algorithms 
are intended to be developed to 
prompt maintenance.   

The CLAM delivers the same 
information as laboratory 
analysis of chlorophyll-a 
extracts without the need for 
an analytical lab.  

Sun tracking 
radiance 
platform 

€5k   
(potentially €2k using 
printable parts) 

TBD (negligible) One set of radiometers is 
sufficient to continually 
collect reference radiometric 
measurements at optimal 
viewing angles. Cost-savings 
through higher data volumes 
of usable data and no need 
for duplicate sensors. 
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WISPStation €40k  €1,500 excluding shipping, every 12 
months (expected)  

Cost-savings through fully 
automated production chain 
of radiometric reference 
measurements under 
favourable viewing angles, 
deployable at remote 
locations. 

Prosumer 
RPAS drone 
systems 

€1300 + €5000 
(camera + irradiance 
sensor)  

€125-150 / year  Cost-savings through 
involvement of non-experts 
in data collection covering 
micro- to mesoscale. 

  

5.1.3. Requirements for systems focussed on wide spatial cover and low cost 

The development priority for these systems is to ensure maximum participation from volunteers to 

cover large areas over long period of times at low cost. 

As an example of previous experience within the consortium, EarthWatch demonstrates the case of 

the Freshwater Watch (FWW) programme with a total of 20,208 Data sets collected around the 

world to date (Figure 2). The FWW programme relies primarily on low-technology test kits and 

reporting through a mobile app. Adding low-cost sensors such as KdUINO or iSPEX to the activities fo 

established and new citizen scientist groups is explored during MONOCLE. Here, purchase cost for 

sensors is a major consideration, as well as ease of use and overcoming any cultural, age or language 

obstacles in the implementation of the sensor. Other factors that came out of the stakeholder 

analysis include the requirement to offer immediate feedback and results when measurements are 

contributed, and support for direct (including face-to-face) contact with the scientist in charge.  

 

Figure 2. Contributions around the world for the Freshwater Watch program 
https://freshwaterwatch.thewaterhub.org/content/data-map, consulted on July 15

th
 2018. 

To ensure wide and global participation from volunteers, opinions were gathered on the optimal 

sensor cost, both in terms of acquisition and maintenance. The analysis of the acquisition and 

maintenance cost was based on the results from two questions of the MONOCLE water quality 

monitoring survey (D9.1): 
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Q9: “Please consider your main water quality variable of interest. If a hobbyist (volunteer) were to 

collect complementary observations in your region, what would be a reasonable purchase price (in 

Euro) for a sensor they operate in this monitoring network to measure this variable” 

Q10: “Thinking of the same variable and volunteer effort, what do you consider a reasonable 

annual cost for maintaining/calibrating (in Euro) that sensor” 

The results shown in Figure 3 indicate that devices should cost no more than €100 or a fraction 

thereof if they have to be acquired / built by the volunteers, but could be more expensive if the 

instruments are provided by governing organizations. In this second case, there is no clear cost 

profile for a ‘generic sensor’. 

 

Figure 3. Results from the questionnaire (Q9): Please consider your main water quality variable of interest. If a hobbyist 
(volunteer) were to collect complementary observations in your region, what would be a reasonable purchase price (in 
Euro) for a sensor? 

It is generally considered that the cost of annual sensor maintenance (Figure 4) should not exceed 

10% of the purchase cost, regardless of who is responsible for covering the cost of maintenance.  

From the results of the questionnaire and the expected cost of the iSPEX, FreshWater Watch and 

KdUino units (Table 4) we can extrapolate that KdUino is most likely to target monitoring 

organizations and other entities for which the purchase / building cost can be overcome. This could 

be the case for educational means in schools, for example, or when a unit is shared between users.  

The FWW and iSPEX kits are well within expected limitations for use by volunteers.  
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Figure 4. Results from the questionnaire (Q10): Thinking of the same variable and volunteer effort, what do you consider 
a reasonable annual cost for maintaining/calibrating (in Euro) that sensor? 

Table 4. Acquisition and operational costs for SC-systems 

System Acquisition unit cost 
(indicative) 

Operational cost 

iSPEX  ~10€   None 

KdUino < €150 
 

 Minimal (device cleaning, charging batteries) 

FreshWater 
Watch 

 €30   None 

 

5.1.4. Precision and Accuracy in the low cost / high coverage systems 

Previous results with iSPEX (Snik et al. 2012) illustrate that it is necessary to average over several 

(~10-20) iSPEX measurements to obtain sufficient accuracy for the AOT (±0.1), because individual 

measurements are subject to significant errors (mostly related to using different smartphone 

cameras). The iSPEX add-on should therefore not a priori be considered a stand-alone instrument, 

but used in coordinated citizen science campaigns and / or within the context of multiple 

measurements, as shall be explored in Work Package 6. MONOCLE will enhance the existing iSPEX 

with spectropolarimetry to obtain quantitative and unbiased measures of water colour, and 

potentially spectral features related to specific constituents and pollutants, which can all be 

obtained in relatively simple and low-cost manners by citizen scientists. 
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The MONOCLE KdUINO version will work with a new sensor. The design of the KdUINO in MONOCLE 

has been conceived as an improvement of a previous version (Bardaji et al. 2016) developed in the 

framework of the FP7 CITCLOPS project (www.citclops.eu). One of the first requirements for the new 

instrument is to have the capability to provide the light extinction coefficient in three different 

colour bands (RGB). The new sensor selected provides four different measurements: the three color 

components (RGB) plus an integrated value. Preliminary laboratory test (Figure 5) show that the light 

extinction coefficient could be retrieved with similar accuracy to those reported for the first sensor 

(Bardaji et al. 2016).  

The main challenge for the new KdUINO in MONOCLE is to engage enough volunteers to deploy 

units in a large number of locations. In this sense the major goals will be to optimize the prize, to use 

the most accessible materials (for the DIY version) and to improve usability aspects (for observation 

retrieval and maintenance). Weight and portability are further aspects to optimize, so that a unit can 

be carried to more remote locations.  

 

Figure 5. Preliminary tests to compare (RGB+PAR) light extinction coefficients of the new KdUINO sensor using TriOS 
RAMSES radiometers as reference 

FreshWater Watch participants record the water quality of rivers, lakes and large stream using a 

field testing kit rather than sensors. Participants test for nutrients (phosphate and nitrate) and 

turbidity which are indicators of water quality, and record contextual observations like vegetation 

cover, surrounding land-use, presence or absence of pollution sources, litter, algal growth to identify 

potential drivers and causes of the observed water quality (detailed information in D4.1). The nitrate 

and phosphate methodology is based on standard colorimetric approaches and have been assessed 

for accuracy using traditional laboratory measurements (Skalar SAN++ auto-analyser) in laboratories 

at CEH (UK), Trent University (CA), University of Siena (IT) and FHT (UK). Quality control of individual 

lot numbers is performed by the manufacturer and by Earthwatch. Turbidity is measured using 

http://www.citclops.eu/
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calibrated Secchi (turbidity) tubes with a measurement range between 14-240 NTU. Secondary 

observational data of water colour (categories), the presence of algae are used to validate reported 

turbidity measurements automatically (as automatic feedback to citizen scientists after uploading 

measurements) and manually by Earthwatch during the monthly QA/QC exercise. 

5.1.5. Other operational requirements 

Sampling frequency 

Another set of survey questions addressed the required, desired, and current sampling frequency of 

in situ sensors. A clear difference in the responses was observed between the regulatory 

requirements (monthly to quarterly dominated the response), how often sampling actually takes 

place (monthly was most common), and the sampling frequency that would be most descriptive of 

the variability of the system (weekly to hourly). The results are detailed in Figure 6. 

 

Figure 6. Survey response for questions regarding the regulatory requirement for sampling 
frequency, actual frequency, and adequate frequency 

The major conclusion from stakeholder response is that we need to adapt the sampling frequency to 

the main objectives of the monitoring programs. Table 5 lists the expected capability of the different 

MONOCLE sensors to achieve the desired sampling frequencies. 

The systems that ensure sampling at weekly-hourly frequencies over longer periods of time are 

those based on autonomous installations (HSP1, the Sun tracking radiance platform and the 

WISPStation). Instruments that are in contact with water, such as the CLAM or fluorometers and  

turbidity probes supported through a network interface for legacy sensors could also be included in 

these systems, once they reaches the intended TRL. However, considering their higher maintenance 

requirement, the observation sites will likely be limited to those that are easily accessible. Data from 

such sensors may capture the temporal variability at those selected sites, but they are less likely to 

capture regional spatial variability. 
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Thus, a clear opportunity exists to add systems focussed on increasing spatial coverage, notably by 

engaging volunteers to report microscale observations, even at high frequency. Such activities 

require an engagement strategy, particularly if daily observations are desired. This may be achieved 

in different scenarios: for example by incorporating observations in educational programs at schools, 

or supporting rewards systems (gamification, open rankings of participation, etc).  Such engagement 

programmes are not a direct objective of the MONOCLE project but supporting them with a highly 

flexible user interface is. This will be achieved in part by providing open source solutions for the 

mobile apps and data integration algorithms, and by supporting near real-time data exchange 

between users and the MONOCLE data backbone (more details in D5.2, “System architecture and 

standards report”). It is therefore a clear requirement for all mobile and handheld MONOCLE 

solutions to support the interoperability standards and communication protocols for near real-time 

and buffered data transmission implemented in MONOCLE. 

Table 5. Sampling capabilities of MONOCLE sensors and systems: (1) Achievable, (2) Only during certain periods, (3) 

Achievable, but with some operational constraints 

Main 
R&D 
focus 

System Seasonally Monthly weekly-hourly 

Accuracy 

HSP1 1 1 1 

CLAM 1 1 1 

Sun tracking radiance 
platform 

1 1 1 

WISPStation 1 1 1 

Prosumer RPAS 
drone systems 

1 3 (In operational 
programs) 

2 (during dedicated 
campaigns) 

Spatial 
Cover 

iSPEX 1 1 3 (volunteer 
engagement) 

KdUino 1 1 3 (volunteer 
engagement) 

FreshWater Watch 1 1 3  (volunteer 
engagement) 
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5.2. Planned instrument improvements 

5.2.1. Improvement priorities per sensor 

HSP1 

Hyperspectral measurements. The MONOCLE instrument will be developed as a hyperspectral 

sensor based on a previous broadband radiometer, the SPN1 (Wood et al., 1999; Wood et al., 2017). 

The system will be developed to ensure the highest quality of hyperspectral data, e.g. by introducing 

stray light correction in data post-processing. 

Interoperability. Since the HSP1 will also be used as a reference sensor for other instruments in the 

project, one of the goals is to improve the data interoperability with the rest of the MONOCLE 

sensors. This is linked to WP5 “Sensor Interoperability and Data Integration- activities”. 

TRL & Cost. The current prototypes will be developed to final production readiness, with attention 

to reducing cost, where possible. Weatherproofing will also be further improved. 

CLAM 

Measurement Quality. Measurement range and precision are to be tested and will feed back into 

the development cycle, while target performance accuracy will be 10% uncertainty/offset. Reference 

concentrations of Chl-a with accredited laboratory analysis of (e.g. High Performance Liquid 

Chromatography (HPLC)) will be used to validate the measurements. 

Field operation. At present the prototype is not waterproof nor splashproof and it requires mains 

power to be operated. Improvements will be made to ensure that the instrument can operate under 

the typical conditions of field measurements (e.g. from small boats). 

Cost. The first prototype will aim at high accuracy allowing for higher cost. Further prototypes to 

lower cost will then be considered. Elements such as light source, detector and sampling capacity 

will be considered.  

Interoperability. Full compatibility with MONOCLE back-end interfaces for sensor synchronization, 

remote triggering, and data logging will be pursued in partnership with a manufacturer.  

Solar tracking radiance platform  

Interoperability. The solar tracking radiance platform will be used to collect reference data sets in 

the project. Therefore one of the goals is to improve the data interoperability with the rest of the 

MONOCLE sensors as well as existing radiometers. This work links to WP5 – Sensor Interoperability 

and Data Integration activities.  

TRL and cost. A major aim for this sensor system is to follow an open design concept, with blueprints 

and 3d-designs available for further development by the wider community. A pre-assembled kit may 

be made available at cost, depending on market demand and manufacturing agreements. A light-

weight version based on 3d printed components is also intended, if this proves to be feasible and 

simultaneously reduces cost. Such designs will be brought to TRL 7.  
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WISPStation 

Measurement Quality. Measurements will be validated against other high-end calibrated field 

spectroradiometers (e.g. TriOS Ramses).  Measurement precision is 2%, depending on the ambient 

light and wave conditions) and target performance accuracy will be determined during the 

MONOCLE campaigns 

Interoperability. Full compatibility with MONOCLE back-end interfaces will be implemented. 

Prosumer Remotely Piloted Aircraft Systems 

Cost reduction. Based on the questionnaire response, a hyperspectral camera is likely too expensive 

for operational use and will remain the domain of research for algorithm development and sensor 

design. With the evolution of technology, this might become affordable in the future. The 

development of a solution based on RGB cameras mounted under a commercial drone with self-

made brackets (e.g. from 3D printing) fits the intended cost profile for ‘prosumer’ users and 

monitoring organisations alike.  

Investigations are needed on the use of irradiance sensors or calibration panels, including lower-cost 

designs (e.g. painted panels using dedicated paint with known reflectance values). The primary goal 

for this development is to set up a multispectral camera in combination with an irradiance sensor 

mounted under/on a drone, which could be affordable for monitoring organisations together with 

an off-the-shelve calibration panel.  

iSPEX 

Observation uncertainty. The main source of uncertainty for iSPEX measurements is the behaviour 

of different smartphone cameras and associated operating software. A general assessment of 

performance for different popular (e.g. Apple, Samsung) smartphone cameras will therefore be 

made first, with specific focus on RGB profiles and white balance.  

Information retrieval from water surface. To further assess the potential to retrieve water colour 

from iSPEX, the spectroscopy will be combined with RGB imaging to perform quantitative 

measurements of broadband spectral features (e.g. blackbody light sources with different 

temperatures). Next, we will investigate the fidelity of detecting spectral features (e.g. chlorophyll 

absorption) to further characterize water bodies based on the concentrations of optically active 

components. 

KdUINO  

Measurement robustness. One of the main challenges to retrieve water transparency near the 

surface is the light fluctuations generated by the effect of the surface waves. The field results 

obtained by Darecki et al. (2011) points out the potential high‐frequency light fluctuations that could 

be induced by water surface waves, with changes of order of magnitude in the range of minute 

variations. This effect could be critical then for KdUINO sensors, and dedicated methodologies for 

data acquisition and post-processing will be developed to minimize the wave light focussing effect. 

Usability, accessibility and interoperability. Improvements will be done to ensure that user 

requirements to acquire and transmit observations and to maintain the instrument will be minimal. 
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The DIY instrument version will be designed with low-cost components since price and unavailability 

will be the main barriers for makers, particularly in developing countries. 

FreshWater Watch 

Quality Control. The test and validation campaigns within MONOCLE WP4 allow to improve the 

precision and accuracy and evaluate the performance of the field kits in relation to various sensors 

using EO techniques. We aim to evaluate the accuracy and precision of all key parameters in a range 

of ecosystems during these campaigns. The integration of autonomous in situ water quality sensors 

within citizen observatory networks will allow a continued validation of the collected citizen science 

data at several key sites (e.g. Sweden and Tanzania). The collaboration with partners developing 

citizen science sensors to measure water colour (iSpex) and turbidity (KdUINO) provides data 

exchange opportunities (interoperability) but also the potential integration of automated water 

colour measurements to lower the subjectivity in the present data collection method. At the end of 

the project, we expect FreshWater Watch tools to be a (calibrated) and complementary approach to 

evaluate water quality of lakes, rivers and transitional waters by citizens alongside a network of low 

cost EO sensors to improve spatial and temporal coverage. 

5.2.2. Improvements summary 

Design improvement priorities from the previous section are summarized in Table 6. Sensor 

interoperatibility and cost are commonly taken onboard as the main development priorities, 

reflecting the scoping of user requirements and overarching aims of the MONOCLE project.  

Table 6. Summary of the aspects to improve during MONOCLE for each instrument  
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HSP1 
x       x x 

 

CLAM x  x x    x   

Sun tracking radiance 
platform x x  x x x  x  

 

WISPStation 
  x     x  

 

Prosumer RPAS 
drone systems x x x     x  
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iSPEX 
  x    x x  

 

KdUino x  x  x x x x x x 

FreshWater Watch 
      x x  

 

6. Exploitation and dissemination 
This report will be advertised on the MONOCLE website and disseminated with a communication 

package towards relevant (H2020) projects, agencies and service operators. The relevant 

improvements of the developed instruments will be communicated internally and externally for 

potential benchmarking of new commercial instrumentation.  

7. Complementary actions 
This section includes a number of complementary actions which may be considered in the first 

MONOCLE sensor development and testing phase.  

7.1. Modelling sensor response to evaluate sensor requirements and designs 

One way to further evaluate the requirements of individual sensors is to use numerical simulations 

to create different theoretical (and fully controlled) measuring scenarios to obtain measurements of 

reference that can be compared later with simulated measurements from the different sensor 

configurations. 

a) Generation of theoretical measuring scenarios. The theoretical measurement scenarios could be 

generated by simulating the optical properties of the different bodies of water according to the 

concentrations of optically active components (OAC: chlorophyll, coloured dissolved organic matter 

(CDOM) and sediments) in the water, environmental conditions (sun position, cloud cover, wind 

speed) and properties of the water column (depth, bottom type). The simulations will be carried out 

with the radiative transfer numerical model HydroLight (Mobley, 1989), which calculates 

distributions of optical properties (radiances) and related quantities (irradiance, reflectance, diffuse 

attenuation functions, etc.) in any body of water. 

Users can specify the water absorption and scattering properties, the sky conditions, and the bottom 

boundary conditions in various ways, e.g., by selection of built-in bio-optical and sky models, by 

reading in user-supplied data, or by writing their own Fortran subroutines to define their input. 

HydroLight then solves the scalar radiative transfer equation (RTE) to compute the in-water radiance 

as a function of depth, direction, and wavelength. Other quantities of interest to optical 

oceanographers, such as the water-leaving radiance and remote-sensing reflectance, are also 

obtained from the computed radiances (Mobley, 1999). The output is presented as text files that can 
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be incorporated later into their own routines. HydroLight can serve as a controlled environment to 

predict what the light field received by a sensor would be under a wide range of conditions. Such 

control of the environment and of simulated noise cannot be obtained in the field, which is best 

used for final testing and evaluation of sensors that were first designed using numerical simulations. 

b) Modeling the response of the sensor. The output of the Hydrolight simulations will provide the 

reference optical properties. The outputs from Hydrolight are transformed to the measurements 

that we expect from the sensors based on their modelled response. The sensor response model will 

be designed considering different technical specifications such as spectral response, sensitivity, 

signal noise ratio, stability, temperature dependence, etc. ... 

The result of this model will provide us the optical measurements we can obtain with the sensors 

and evaluate its performance. In Figure 7 we show the outputs of simulating two water bodies with 

different compositions (dominated in each case by phytoplankton or sediments), the result 

(Apparent Optical properties, AOP) that would be obtained in the first simulation and two possible 

outputs of the models of sensors: one for a multispectral sensor - of 6 bands - and the other with a 

commercial sensor of color (RGB) 

 

 

Figure 7 Schematic diagram of how we could obtain the final simulated optical measurements of different devices. In 
these examples there are the comparison between a multispectral sensor and another with only RGB channels 
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A modelling case example: Redesigning KdUINO  

In order to evaluate the performance of the new sensor, a first test has been developed and 

summarized in Figure 6. The outputs to compare are the results from PCA analysis of theoretical 

measurements in different water bodies with different concentrations of chlorophyll and colour 

dissolved organic matter (CDOM). Top and bottom plots provide the same information, but on the 

top (green background) dots are coloured according the chlorophyll concentration in each case and 

bottom (light orange background) dots are coloured according to the CDOM concentration. The 

plots on the left (red axes) shows the result of the reference classification, obtained with the analysis 

of the outputs provided by the Hydrolight simulation in each case. In this case we assume the 

measurements were obtained with the highest spectral resolution possible (hyperspectral), with the 

highest vertical resolution (measurements every 2 cm) and error free. Three different groups can be 

distinguished (marked in dotted lines) that corresponds to (high levels of chlorophyll, low levels of 

CDOM) at the top, (low levels of chlorophyll, low levels of CDOM) bottom left, and (low levels of 

chlorophyll, high levels of CDOM) bottom right. We could consider that our new device should be 

designed to identify, at least this three different groups of water bodies.  

 

Figure 8 Example of the requirements evaluation for the new version of KdUINO using the outputs from the numerical 
models. The simulations provide the data for classifying different water bodies based on the PCA analysis of the Kd 
measurements obtained 

The middle plots (blue axes) corresponds to the classification obtained with the first proposed 

configuration for the new instrument: four sensors at different depth. The sensors provide four 
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different channels (RGB + TOTAL), and the spectral response has been modelled based on provider 

specifications. The sensor uncertainties have been modelled adding a random signal that generates 

errors up to 10% of the original measurement. According to the results, we could discard this 

configuration since it would not be able to separate the three groups as in the reference case. 

The right plots (orange axes) provide the results for the second proposed implementation, very 

similar to the first proposal but adding sensors redundancy (two sensors at each depth), which will 

reduce measurement uncertainty. This solution could be accepted since it would be possible to 

identify the three different groups of water bodies. 

This example shows the potential of numerical simulations on deciding the design of the new 

instruments to find the optimal solution between technical challenges and stakeholder 

requirements. 

7.2. Volunteer engagement strategies for wide spatial coverage systems 

The potential complementarity of systems focussed on low-cost, wide spatial coverage has been 

already pointed out in previous sections of the document, but it worthwhile to consider the role of 

volunteers and the way to support long-term engagement in instrument design. 

Stakeholders were consulted (Q30) on eight different aspects of monitoring in which citizen science 

could play a potential role. Figure 9 shows the responses. There is a global agreement of the 

potential role of citizen science, on five aspects (above red dotted line in Figure 9) more than 65% of 

the stakeholders consider that citizen science could be suitable and in two of them (above blue 

dotted line in Figure 9) the agreement was higher than 80%: (a) expanding spatiotemporal coverage 

and (b) large-scale campaigns. 

 

 

Figure 9 Results of the questionaire (Q30) “How suitable do you consider citizen science in water quality monitoring in 
the following situations?” 

One of the goals should be then to think on promoting the consolidation of a community of 

volunteers that will collaborate in providing (and/or validating when possible) observations with 

MONOCLE tools. This links closely to a growing understanding of the importance of managing citizen 

scientist communities in environmental monitoring (e.g. Conrad and Hilchey 2011 and references 

therein). In MONOCLE only the FreshWater Watch programme maintains such communities. There 

has been some large-scale events using iSPEX (Light2015) and some school participation for KdUINO 
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(Bardaji et al. 2016) in previous projects. Ideally, these experiences are consolidated within the tools 

for community engagement provided with MONOCLE systems. 

Stakeholders were also consulted to define the best methods to communicate with the community 

of volunteers. Figure 10 shows the results, in which there is a clear preference for choosing existing 

social networks and tools. These channels could be very effective to establish links among the 

volunteers, but it could be very challenging to develop collaborative validation systems using them, 

since there is little control of the offered services given that there are external tools. It is 

recommendable to evaluate existing social platforms in citizen science that could be adapted to 

MONOCLE objectives and goals. 

 

Figure 10 Results from (Q32) of the survey: What is the optimal way to support communication between participants in 
Citizen Science projects? (select the most representative option) 
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