74 research outputs found

    The Discovery of a Planetary Companion Interior to Hot Jupiter WASP-132 b

    Get PDF
    Hot Jupiters are generally observed to lack close planetary companions, a trend that has been interpreted as evidence for high-eccentricity migration. We present the discovery and validation of WASP-132 c (TOI-822.02), a 1.85 ± 0.10 R ⊕ planet on a 1.01 day orbit interior to the hot Jupiter WASP-132 b. Transiting Exoplanet Survey Satellite and ground-based follow-up observations, in conjunction with vetting and validation analysis, enable us to rule out common astrophysical false positives and validate the observed transit signal produced by WASP-132 c as a planet. Running the validation tools vespa and TRICERATOPS on this signal yields false-positive probabilities of 9.02 × 10-5 and 0.0107, respectively. Analysis of archival CORALIE radial velocity data leads to a 3σ upper limit of 28.23 ms-1 on the amplitude of any 1.01 day signal, corresponding to a 3σ upper mass limit of 37.35 M ⊕. Dynamical simulations reveal that the system is stable within the 3σ uncertainties on the planetary and orbital parameters for timescales of ∼100 Myr. The existence of a planetary companion near the hot Jupiter WASP-132 b makes the giant planet's formation and evolution via high-eccentricity migration highly unlikely. Being one of just a handful of nearby planetary companions to hot Jupiters, WASP-132 c carries with it significant implications for the formation of the system and hot Jupiters as a population

    TIC 278956474: Two Close Binaries in One Young Quadruple System Identified by TESS

    Get PDF
    We have identified a quadruple system with two close eclipsing binaries in Transiting Exoplanet Survey Satellite (TESS) data. The object is unresolved in Gaia and appears as a single source at parallax 1.08 ± 0.01 mas. Both binaries have observable primary and secondary eclipses and were monitored throughout TESS Cycle 1 (sectors 1-13), falling within the TESS Continuous Viewing Zone. In one eclipsing binary (P = 5.488 days), the smaller star is completely occluded by the larger star during the secondary eclipse; in the other (P = 5.674 days) both eclipses are grazing. Using these data, spectroscopy, speckle photometry, spectral energy distribution analysis, and evolutionary stellar tracks, we have constrained the masses and radii of the four stars in the two eclipsing binaries. The Li i equivalent width indicates an age of 10-50 Myr and, with an outer period of 858+7-5 days, our analysis indicates this is one of the most compact young 2 + 2 quadruple systems known

    The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561

    Get PDF
    We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and 5.5−1.6+2.0{5.5}_{-1.6}^{+2.0}g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies

    Two Intermediate-mass Transiting Brown Dwarfs from the TESS Mission

    Get PDF
    We report the discovery of two intermediate-mass transiting brown dwarfs (BDs), TOI-569b and TOI-1406b, from NASA's Transiting Exoplanet Survey Satellite mission. TOI-569b has an orbital period of P=.55604±0.00016 days, a mass of Mb = 64.1±1.9 MJ, and a radius of Rb = 0.75±0.02 RJ. Its host star, TOI-569, has a mass of Må = 1.21±0.05 M, a radius of Rå = 1.47±0.03 R, [Fe H 0.29 0.09] = + dex, and an effective temperature of Teff = 5768±10K. TOI-1406b has an orbital period of P=10.57415±0.00063 days, a mass of Mb = 46.0± 2.7 MJ, and a radius of Rb = 0.86±0.03 RJ. The host star for this BD has a mass of Må = 1.18±0.09 M, a radius of Rå = 1.35±0.03 R, [Fe/H] =-0.08± 0.09 dex, and an effective temperature of Teff = 6290±100 K. Both BDs are in circular orbits around their host stars and are older than 3 Gyr based on stellar isochrone models of the stars. TOI-569 is one of two slightly evolved stars known to host a transiting BD (the other being KOI-415). TOI-1406b is one of three known transiting BDs to occupy the mass range of 40-50 MJ and one of two to have a circular orbit at a period near 10 days (with the first being KOI-205b). Both BDs have reliable ages from stellar isochrones, in addition to their well-constrained masses and radii, making them particularly valuable as tests for substellar isochrones in the BD mass-radius diagram

    TESS hunt for young and maturing exoplanets (THYME). V. A sub-neptune transiting a young star in a newly discovered 250myr association

    Get PDF
    The detection and characterization of young planetary systems offer a direct path to study the processes that shape planet evolution. We report on the discovery of a sub-Neptune-sized planet orbiting the young star HD 110082 (TOI-1098). Transit events we initially detected during TESS Cycle 1 are validated with time-series photometry from Spitzer. High-contrast imaging and high-resolution, optical spectra are also obtained to characterize the stellar host and confirm the planetary nature of the transits. The host star is a late-F dwarf (Må = 1.2Me) with a low-mass, M dwarf binary companion (Må = 0.26Me) separated by nearly one arcminute (∼6200 au). Based on its rapid rotation and Lithium absorption, HD 110082 is young, but is not a member of any known group of young stars (despite proximity to the Octans association). To measure the age of the system, we search for coeval, phase-space neighbors and compile a sample of candidate siblings to compare with the empirical sequences of young clusters and to apply quantitative age-dating techniques. In doing so, we find that HD 110082 resides in a new young stellar association we designate MELANGE-1, with an age of 250-+7050 Myr. Jointly modeling the TESS and Spitzer light curves, we measure a planetary orbital period of 10.1827 days and radius of Rp = 3.2 ± 0.1R+. HD 110082 b’s radius falls in the largest 12% of field-age systems with similar host-star mass and orbital period. This finding supports previous studies indicating that young planets have larger radii than their field-age counterparts

    TOI-811b and TOI-852b: New transiting brown dwarfs with similar masses and very different radii and ages from the TESS mission

    Get PDF
    We report the discovery of two transiting brown dwarfs (BDs), TOI-811b and TOI-852b, from NASA's Transiting Exoplanet Survey Satellite mission. These two transiting BDs have similar masses but very different radii and ages. Their host stars have similar masses, effective temperatures, and metallicities. The younger and larger transiting BD is TOI-811b at a mass of Mb = 59.9 ± 13.0MJ and radius of Rb = 1.26 ± 0.06RJ, and it orbits its host star in a period of P = 25.16551 ± 0.00004 days. We derive the host star's age of 93+61-29 Myr from an application of gyrochronology. The youth of this system, rather than external heating from its host star, is why this BD's radius is relatively large. This constraint on the youth of TOI-811b allows us to test substellar mass-radius evolutionary models at young ages where the radius of BDs changes rapidly. TOI-852b has a similar mass at Mb = 53.7 ± 1.4MJ but is much older (4 or 8 Gyr, based on bimodal isochrone results of the host star) and is also smaller with a radius of Rb = 0.83 ± 0.04RJ. TOI-852b's orbital period is P = 4.94561 ± 0.00008 days. TOI-852b joins the likes of other old transiting BDs that trace out the oldest substellar mass-radius evolutionary models where contraction of the BD's radius slows and approaches a constant value. Both host stars have a mass of M∗ = 1.32M⊙ ± 0.05 and differ in their radii, Teff, and [Fe/H], with TOI-811 having R∗ = 1.27 ± 0.09R⊙, Teff = 6107 ± 77 K, and [Fe/ H]=+0.40 ± 0.09 and TOI-852 having R∗ = 1.71 ± 0.04R⊙, Teff = 5768 ± 84 K, and [Fe/H]=+0.33 ± 0.09. We take this opportunity to examine how TOI-811b and TOI-852b serve as test points for young and old substellar isochrones, respectively

    The Revised TESS Input Catalog and Candidate Target List

    Get PDF
    We describe the catalogs assembled and the algorithms used to populate the revised TESS Input Catalog (TIC), based on the incorporation of the Gaia second data release. We also describe a revised ranking system for prioritizing stars for 2 minute cadence observations, and we assemble a revised Candidate Target List (CTL) using that ranking. The TIC is available on the Mikulski Archive for Space Telescopes server, and an enhanced CTL is available through the Filtergraph data visualization portal system at http://filtergraph.vanderbilt.edu/tess_ctl
    • …
    corecore