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Abstract

The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this
aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high-resolution near-infrared
spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC
obtained spectra of ∼2700 stars. In Paper IV we used these data to study the young stellar population. Here we
study the kinematic properties through radial velocities (vr). The young stellar population remains kinematically
associated with the molecular gas, following a~ -10 km s 1 gradient along the filament. However, near the center of
the region, the vr distribution is slightly blueshifted and asymmetric; we suggest that this population, which is
older, is slightly in the foreground. We find evidence for kinematic subclustering, detecting statistically significant
groupings of colocated stars with coherent motions. These are mostly in the lower-density regions of the cloud,
while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically
evolved cluster. The velocity dispersion sv varies along the filament. The ONC appears virialized, or just slightly
supervirial, consistent with an old dynamical age. Here there is also some evidence for ongoing expansion, from a
vr-extinction correlation. In the southern filament, sv is ∼2–3 times larger than virial in the L1641N region, where
we infer a superposition along the line of sight of stellar subpopulations, detached from the gas. In contrast, sv
decreases toward L1641S, where the population is again in agreement with a virial state.

Key words: open clusters and associations: individual (Orion Nebula Cluster, L1641) – stars: formation – stars:
kinematics and dynamics – stars: pre-main sequence

Supporting material: animation

1. Introduction

The observational study of stellar kinematics in young
clusters provides critical clues on the mechanisms governing
cluster formation and early evolution. The velocities of young
stars, in comparison with gas kinematics, can reveal if and for
how long the newly formed stellar population follows the
initial/early gas flows, which may be due to turbulence,
gravitational infall, cloud collisions, or some other triggering
mechanism. The star cluster may be forming in a quasi-
monolithic fashion, or the process may involve merging of
different subclusters. These mechanisms may be revealed by a
study of the kinematics, including kinematic substructure, of
the young stars. Subsequent dynamical evolution may involve
mixing of orbits, e.g., as the star cluster virializes as a
gravitationally bound system. Alternatively, depending on the
overall efficiency of formation from the natal gas clump and on
the degree of gas expulsion, the stellar population may be or
become unbound and thus expand, with fewer opportunities for

stellar interactions. Depending on the rate of star formation,
i.e., the efficiency per local free-fall time, these potential
evolutionary pathways may be followed even while the cluster/
clump system is still gas dominated. Another way to test
different star formation scenarios is thus to measure the
velocity dispersion of the cluster and compare it with the value
expected from virial equilibrium given the gravitational
potential due to the total mass (stars + gas) of the system.
Great effort has been made over the years to study the

dynamical evolution of young clusters theoretically, through N-
body simulations (e.g., Scally & Clarke 2002; Goodwin &
Bastian 2006; Baumgardt & Kroupa 2007; Allison et al. 2009,
2010; Fellhauer et al. 2009; Parker & Meyer 2012; Parker et al.
2014; Farias et al. 2015, 2017). Results reveal a fairly complex
picture, in that the dynamical state and evolution of the stellar
population, the bound fraction, and the morphology depend on
several factors: the star formation efficiency, the time of gas
removal and its duration, and the initial configuration of
hierarchical/substructured protoclusters.
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Observationally, some works have analyzed the morphology
of young clusters at different ages to constrain their dynamical
evolution and initial conditions (e.g., Gutermuth et al. 2005;
Schmeja & Klessen 2006; Da Rio et al. 2014b; Banerjee &
Kroupa 2015; Jaehnig et al. 2015). However, observations of
radial velocities in young clusters are a more powerful tool to
probe the current dynamical state, search for and parameterize
binary populations, and investigate spatially coherent velocity
gradients or substructure that might give clues to the initial
conditions or reveal multiple populations (Jeffries et al. 2006,
2014; Fűrész et al. 2008; Tobin et al. 2009; Cottaar et al. 2012;
Rigliaco et al. 2016). In many cases, these radial velocities, vr,
have been obtained from optical high-resolution spectroscopy
surveys that reach radial velocity precisions of ∼1 km s−1 or
better for individual sources. Such precision is needed to
resolve the kinematics of nearby relatively low-mass regions of
star formation (e.g., Orion), which have velocity dispersions of
a few km s−1. In young embedded clusters, optical spectrosc-
opy can be limited by dust extinction and thus be unable to
reach stellar members affected by high extinction.

In this context, with the INfrared Spectra of Young Nebulous
Clusters (IN-SYNC) project, see Cottaar et al. (2014), which is
an ancillary program of the SDSS-III, we obtained multiobject
near-infrared (NIR) high-resolution spectra in three young
clusters. This program, which used the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) spec-
trograph, allowed us to derive stellar parameters and to reach
radial velocity precisions to ∼0.3 km s−1 down to
H = 12.5 mag. The first part of this survey covered the
Perseus cloud, through their young clusters IC348 (Cottaar
et al. 2014, 2015, hereafter Paper Iand Paper III) and NGC
1333 (Foster et al. 2015, hereafter Paper II). We have found
evidence for a supervirial stellar population in IC 348, whereas
in NGC 1333 the stars are in close agreement with virial
velocities, but the diffuse gas and dense gas have a significantly
different velocity dispersion. Moreover, we found that stars in
NGC 1333 show a similar velocity dispersion to the diffuse
gas, whereas the dense cores appear in subvirial motions,
unless their dynamics are significantly regulated by large-scale
magnetic fields.

In a second part of IN-SYNC, we covered the Orion A
molecular cloud. At the distance of ∼400 pc (Menten et al.
2007), this filamentary structure includes the Orion Nebula
Cluster (ONC), the closest site of active massive star formation.
Sparser populations are present to the north, in the upper
sword, and NGC 1977, and to the south, with NGC 1980 and
L1641. This population has been thoroughly studied at many
wavelengths through photometry and spectroscopy (Hillen-
brand 1997; Hillenbrand & Hartmann 1998; Fang et al. 2009,
2013; Da Rio et al. 2010, 2012; Robberto et al. 2010, 2013;
Hsu et al. 2012, 2013). Memberships have been estimated
through optical spectroscopy, the presence of IR excess
emission (Megeath et al. 2012), and X-ray emission (Getman
et al. 2005; Pillitteri et al. 2013). The population has a typical
model-dependent mean age of ~ –2 3 Myr throughout the
region and in spite of the large extent of the structure
(∼40 pc). The only exception is the population around
NGC1980, which is somewhat older (Alves & Bouy 2012;
Bouy et al. 2014; Da Rio et al. 2015). In the ONC, a large age
spread compared to the local free-fall time is present, see Da
Rio et al. (2010, 2014a, 2015), indicating a slow star formation

process relative to the dynamical timescale of these star-
forming clouds (Tan et al. 2006; Krumholz & Tan 2007).
The kinematic properties of the molecular gas in Orion A

have been studied in great detail (e.g., Bally et al. 1987; Dame
et al. 2001; Nishimura et al. 2015; Ishii et al. 2016) from tracers
such as 12CO, 13CO, and C18O. The filament shows a large
∼10 km s−1 change in radial velocity over its length, with the
south end (the “tail”) blueshifted compared to the north end. In
addition, based on 3D dust mapping, Schlafly et al. (2015)
found evidence that the tail is several tens of pc more distant
than the northern end. Unless the Orion A cloud is stretching
out along its orientation in plane of the sky—which is unknown
because of the lack of accurate proper motion measurements—
this would suggest that the Orion A filament is compressing
along its length. As for stellar kinematics, Fűrész et al. (2008)
and Tobin et al. (2009) conducted an optical survey measuring
vr in the northernmost third (~ 2 long) of the region, centered
on the ONC. In this region, they found that the velocities of the
young stars follow the gas (13CO) velocity, although their
distribution is slightly asymmetric with a broad blueshifted tail
that is not present in the gas component. They also noted that
the large-scale vr gradient steepens north of the ONC, which
had been interpreted as evidence for large-scale infall.
In our IN-SYNC survey, we obtained 4828 spectra of 2691

individual sources throughout the ~ 6 long region. The spatial
distribution of these sources is shown in Figure 1, left panel,
together with a 13CO map from Nishimura et al. (2015). In the
previous paper of this series (Da Rio et al. 2015, hereafter
Paper IV), we used these data to study the properties of the
stellar population. We focused on the fitted stellar parameters
(Teff , AV, glog , vr), positioned the sources in the Hertzsprung–
Russel diagram (HRD), and assigned stellar ages.
Our stellar sample was limited to <H 12.5 mag and

assembled by prioritizing known members from a multitude
of literature estimates; additional sources with unknown
membership were then added if they were in the luminosity
range reached by our survey. Our sample reaches masses as
low as ~M 0.15 M for low values of AV, which in turn covers
values up to ∼20 mag with a mean AV = 2 mag. The coverage
of known members within the luminosity range of the survey is
nearly complete throughout the region, with the exception of
the central part of the ONC, where fiber collision constraints,
combined with crowding, limited us to about 50% complete-
ness. Stellar parameters are very accurate for cool stars
( <T 5000eff K), with mean uncertainties in Teff on the order
of 50 K and mean and median errors in vr of ∼1 and
0.3 km s−1. Our precision worsens at early spectral types;
however, because of the IMF, only a minority of members are
in this range.
We found a clear confirmation of a genuine age spread

throughout the region, from the correlation between HRD ages
and surface gravity-derived ages, as well as an anticorrelation
between ages and IR excess, and ages and extinction. We also
confirmed that the non-embedded population of young stars
around NGC1980 is older than the rest of the system, but
suggested that it is not part of a well-separated cluster. This is
because the kinematic properties of these sources are
indistinguishable from those of younger more embedded stars
at the same position. Based on stellar parameters as well as
radial velocities, we found ∼400 new candidate members.
Most of these turn out to be young diskless sources, in portions
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Figure 1. Left panel: spatial distribution of the IN-SYNC targets, overplotted on a 13CO(2−1) map from Nishimura et al. (2015). Red circles indicate known members
from the literature, magenta squares show new candidate members from Paper IV, and blue crosses are the remaining sources, which are likely non-members. Middle
and right panels: position–velocity diagram for the targets, compared to either 12CO(2−1) or 13CO(2−1) data.

Figure 2. Animation showing the three-dimensional position–position–velocity diagram of our stellar sample, compared to that of the 13CO.

(An animation of this figure is available.)
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of the Orion A cloud that are not fully covered by previous
studies to assign memberships.

In this paper we continue the analysis of our IN-SYNC data
set, focusing on the kinematics and dynamics of the population.

2. Kinematic Comparison between Stars and Gas

Figure 1 shows a map of the Orion region as well as a
position (decl.)–velocity diagram of our IN-SYNC targets in
comparison with that of the molecular gas tracers. Figure 2
shows an animation of the full 3D (R.A., decl., and vr) cube of
the data. It is qualitatively evident that stars follow the global
motions of the molecular gas throughout the region, as seen
before limited to the north portion of the cloud
( d-  < < - 6 4 , Tobin et al. 2009). Moreover, unsurpris-
ingly, non-members tend to have velocities that are different
from the bulk of the young population. Another feature is the
fact that there appear to be more members with vr lower than
the peak value than stars with higher velocities, in line with the
results from Tobin et al. (2009) that the stellar velocity
distribution is asymmetric with a broader blueshifted wing.

To investigate this possibility, we construct positional maps
of mean stellar velocities. First we exclude from our analysis all
non-members; we also exclude sources with velocities strongly
different from that of the bulk of the population ( < -v 20r km
s−1 or >v 35r km s−1) to exclude outliers that either have
erroneous membership or velocity assignment, are binary
systems, or ejected members. Then, for every angular position
in a d( ), , we consider the sources within a circular aperture
with radius of ¢20 , provided that there are at least 30 sources in
the aperture, and we compute the weighted average of their vr
values, as well as the median and mode value. Last, we smooth
each map with a kernel of ¢5 of radius.

Figure 3 shows the derived maps, as well as the difference
between stars and gas, color-coded according to vr and density
or flux. Visually, it appears that the difference stars-gas, which
we referred to as Dvr , is on average more negative then
positive, as the overall color leans toward the blue. In fact, the
area-weighted mean value of Dvr using the stellar mean
velocity is −0.87 km s−1, which decreases in absolute value to
−0.44 km s−1 , weighting the result on the stellar density.
These values decrease to −0.66 and −0.25 km s−1, respec-
tively, when adopting the mode of the stellar velocities. Such
difference is also evident from Figure 4, where we show the
velocity distributions of stars and gas in different declination
bins. Therefore, it appears that stars are systematically slightly
blueshifted compared to the gas, and this is in part due
to an asymmetry in the vr distribution, as manifested by the
difference between mode and mean vr.

It is possible that this offset is not real and is simply due to
zero-point offsets in vr. However, by comparing our radial
velocities with those from Tobin et al. (2009) for 550 matching
sources, we find a difference in the values of 0.11 ±
0.05 km s−1, much smaller than the offsets between stars and
gas. Unless we both have a similar systematic error in vr even
though we used different instruments and techniques, this
suggests that our IN-SYNC velocities are well calibrated.

Figure 5 shows the dependence of the Dvr on position in
declination, computed from the maps of Figure 3 weighting, in
R.A., on stellar density. The largest offset is found in the
central part of the cloud, at  d-  - 7 6 , around L1641-N
and NGC1980. Here the mean and mode of the velocity
distribution have the largest difference, suggesting a very

asymmetric distribution. As anticipated and discussed in
Paper IV, this part of the Orion A stellar population is ~40%
older than the ONC and L1641-S and is far less extincted,
suggesting that it is slightly in the foreground and less strongly
associated with the molecular material. A bias due to
incompleteness at high AV is not the case, since the column
density of the molecular material in this region is relatively
low, up to a few magnitudes in AV (Lombardi et al. 2014).
Thus, star formation in Orion A initiated earlier in the central
part of the cloud, which is closer along the line of sight that the
remaining gas in the same direction.
An offset in vr between stars and gas may have different

origins. One possibility is that the central part of the cloud
presented a primordial substructure along the line of sight, both
spatially and kinematically. Gas that formed the older
population of L1641-N and NGC1980 was closer and with
small 1 km s−1 blueshifted motion than the remaining gas
today. Such an offset is in line with the typical turbulent
motions within a molecular cloud (e.g., Hennebelle &
Falgarone 2012). However, a comparison of mean velocities of
12CO(2−1) and 13CO(2−1) (expected to trace lower and higher
density regions, respectively) finds only modest differences of
∼0.1 km s−1. However, in studies of infrared dark cloud
(IRDC) filaments, Henshaw et al. (2013) have found offsets of
similar magnitude between denser gas traced by N2H

+(1−0)
and lower-density gas traced by C18O(1−0).
Another possibility is that prolonged stellar feedback of this

foreground population pushed back on the remaining back-
ground gas, which is now receding 1 km s−1 with respect to the
stellar population.
If primordial substructure along the line of sight is present,

the asymmetry of the velocity distribution could also originate
from the superposition of two kinematically separated
substructures of the cloud. Since, as shown in Paper IV, we
found that the vr distribution around L1641-N does not vary
with stellar age, these structures would have needed to sustain
star formation at the same time, and with similar duration,
which seems somewhat unlikely.

3. Kinematic Subclustering

The presence of kinematic substructures in the stellar
population of Orion A, and their comparison with those of
the gas, can provide important clues on the primordial
substructure of the parental star-forming gas. On the other
hand, smooth distributions in space and velocity could indicate
that dynamical evolution has occurred, since spatial and
kinematic substructure is expected to be erased over time in a
gravitationally bound system. Evidence of this has been found
in the ONC (Da Rio et al. 2014b), where the population in the
denser more dynamically evolved core has less spatial
substructure than the cluster outskirts.
An analysis of the kinematic substructure in position–

position–velocity (ppv) in Orion A was presented by Hacar
et al. (2016), using a preliminary version of our IN-SYNC data.
These authors adopted a friends-of-friends algorithm that
isolates groups or chains of sources in which the separation
of each member of the group, in the ppv space, from another
member of the group is smaller than a given threshold.
Imposing groups with at least 4 sources, they find 37 of such
groups, most of them (30) in the northern region of the cloud
(L1461N and above), significantly more than expected from
random positions in ppv space.
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There is no optimal method to identify structures of discrete
points in three-dimensional space, rather, different techniques
can be developed depending on what one defines as a
“structure.” In Sections 3.1 and 3.2 we describe two separate
methods and discuss the results.

1. ppv peaks: this technique is based on building a three-
dimensional density map in ppv space from our discrete
stellar sample. On this map, then, peaks are identified as
overdensities in ppv space. Individual stars can be
associated with one or another peak. This method is
somewhat analogous to the algorithm Clumpfind
(Williams et al. 1994), which is widely used to identify
ppv structures in continuous molecular line spectral cube

data. This method is sensitive to centrally concentrated
overdensities in ppv, but does not necessarily identify
filamentary or very elongated structures.

2. Connected structures: this technique does not adopt a
density map in ppv, but instead builds groups of stars in
ppv starting from the highest local density of stars in ppv
and adding individual stars as nearest neighbors until a
given density threshold is encountered, before creating a
new separate group. While this technique does not require
kinematic structures to be centrally concentrated, the
number and size of structures can be very sensitive to
small perturbations of the position of individual sources
in ppv space.

Figure 3. Maps of mean or mode velocity for gas and stars, and difference between stars and gas, color-coded as indicated in the legend.
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3.1. ppv Peaks

To construct stellar density maps in ppv space, we consider
each point of the ppv space and find the closest n stars, in ppv,
to that point. We adopt a conversion metric such that 1 in
spatial distance in R.A. and decl. corresponds to 4 km s−1 in vr.
This has been chosen so that the overall spatial extent of the
region (i.e., in declination) is comparable with the broadness of
the vr distribution. The stellar density associated with the point
is then n/V, where V is the volume of the sphere of radius equal
to the distance to the nth star. Therefore, our density maps
naturally trace the density of groupings of stars at a given
number scale defined by n. Last, coherent structures in ppv
space are identified as local density maxima on these density
maps within a kernel size of 10′ or 0.66 km s−1. For each
structure, we also measure the density r a d( )v, , r , as well as
the density “contrast” dr against the local background in ppv
space, for which we adopted the density maps obtained
for =n 30bg .

Figure 6 (upper panels) shows the result for n = 5. It is
noteworthy that the majority of these groupings are located
along the filament south of the ONC, where about half of our
IN-SYNC members are concentrated. On the other hand, the
ONC as a whole, accounting for almost half of the stellar

population in the cloud, is found to be a single kinematic
substructure in ppv. Da Rio et al. (2014b) also showed that the
projected spatial positions of young members in the ONC,
especially the central regions, have reached a relatively smooth
quasi-isotropic distribution, and that the population within the
half-mass–radius r 1h pc is at least 7 free-fall times old. This
evidence, together with the lack of kinematic substructure we
have now identified, points to a relatively old dynamical age for
the ONC (Tan et al. 2006), suggesting that primordial
structures in space and velocity may have been erased by
dynamical interactions. This is in agreement with estimates that
the ONC is at least 4 free-fall times older within the half-mass–
radius r 1h pc (Da Rio et al. 2014b).
Figure 6 also shows that at the location of L1641N and

NGC1980 (  d-  - 7 .5 6 ) substructure is significant: the
different substructures show a large difference in velocity,
more than elsewhere. In this region, as shown in Section 2, the
overall stellar velocity distribution is asymmetric, thus this
asymmetry is likely caused by the superposition of kinemati-
cally distinct groups of stars in the same region of the cloud.
After identifying our kinematic substructures as density

peaks in ppv, we can attempt to associate individual stars with
each substructure. The criterion we chose is the following: a
star belongs to a kinematic substructure if, along a segment in
ppv space spanning from the star to the density peak, the ppv
density increases monotonically. An illustration of the result is
shown in Figure 6, bottom panels.
Increasing n decreases the overall number of identified

substructures in ppv space, as individual small groupings of
stars merge into larger single structures (see Table 1). For
n = 20, the only structures detected are three groups for
L1641S, two for L1641N (all roughly coinciding with the
densest groupings of stars in R.A.–decl. space), plus two
structures in the ONC region, and one north of it.
We performed tests to evaluate the statistical significance of

our detected kinematic substructures, in particular for what
concerns the velocity axis of ppv space. To this end, we created
artificial stellar distributions in ppv space, where the positions
are the same as our IN-SYNC members, and the velocities are
randomly drawn from the local vr distribution. This latter was
computed, for each position in a d( ), measuring the weighted
vr mean of the nearest 30 members, as well as the measured

Figure 4. vr distribution for stars and gas (13CO), divided into bins in declination.

Figure 5. Variation ofDvr—stars-gas (13CO)—vs. declination, using the mean
or the mode of the stellar vr distribution as indicated in the legend.
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dispersion, after one iteration of sigma clipping, with a s3
threshold, to remove outliers. From each realization of artificial
distributions in ppv, density maps are created and kinematic
substructures isolated, with the same method as was applied on
the actual data. For each value of n, 50 of these artificial tests
have been performed, and the results are summarized in
Table 1. We find that regardless of n, the number of
substructures we detect is compatible with the number from
random artificial experiments. This, however, is in part the case
because our artificial tests kept the stellar positions, and

randomized only the velocities. Therefore spatial groupings of
sources in the Orion A may still lead to the detection of
structures in ppv in spite of a high degree of randomness in vr.
On the other hand, the density contrasts dr resulting from our
data are significantly higher than those from artificial ppv
distributions; this confirms that the kinematic substructures we
identify in ppv have a statistically significant higher coherence
in velocity than the “local” velocity distribution of the nearest
30 stars for each position in the Orion A cloud.

3.2. ppv Connected Structures

The method described in Section 3.1 is particularly sensitive
to structures that appear as centrally concentrated “clumps” in
ppv space; coherent structures with more irregular shapes may
not be detected. Thus, we introduce a conceptually different
approach and analyze the different findings. In this case, we do
not build a three-dimensional map of stellar density in ppv, but
we consider the stellar positions in such space as discrete
elements. We associate with each star a local density in ppv as
above by measuring the volume containing the closest n stars.
We then begin by considering the star with the highest density
peak, and use this as the starting point for a group of stars in
ppv. We expand this group by adding iteratively one star at a

Figure 6. Top panels: position–position and position–velocity diagrams of the identified overdensities in ppv space. The size of the circles indicates the the local
density of the structure in ppv, while the colors are arbitrarily chosen to easily distinguish between different groups. Bottom panels: position of the members in the
same projection of the ppv space. Colored dots indicate stars associated in ppv with each of the identified substructures (see the text), with colors corresponding to each
structure in the upper panels.

Table 1
Substructures in ppv Space

Measured Random Simulation

n Nstructures dr Nstructures dr

4 20 16.347 14.760 ± 2.619 1.405 ± 1.336
5 17 10.740 13.920 ± 3.081 1.184 ± 1.243
6 14 9.215 12.360 ± 2.797 0.937 ± 0.729
7 14 6.486 11.880 ± 2.862 0.899 ± 0.75
8 13 5.427 10.520 ± 1.475 0.851 ± 0.537
10 12 3.431 9.920 ± 1.605 0.702 ± 0.406
20 8 2.050 7.440 ± 1.635 0.500 ± 0.163
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time in order of closest distance in ppv space from any of the
group members. The growth of the group halts when the next
star about to be added falls at a density below a fixed threshold,
r0. Next, a new group is started from the highest density star
among those not yet included in a previous group, assuming it
is above this threshold.

We vary three parameters: n = 5 or 10, r = 10 , or
0.3pc−2 km−1 s2, and also the metric to measure the distance
in ppv as the interval dv on the vr axis, in km s−1, corresponding
a spatial interval of 1°; in this case, we assume d = 4v , as in
Section 3.1, but also test values of 2 and 8. An example of the
results is shown in Figure 7. Overall, we find a higher number
of structures than with the method of Section 3.1, as we are
able now to identify smaller structures that would not have
been resolved given the kernel size in ppv we previously
adopted. As a result of this, while the ONC remains the largest
identified structure, some additional smaller substructures are
now detected in its vicinity. As with the identifications of peaks
in the ppv density maps, even in this case, we find the L1641
region to be highly substructured. Decreasing r0 increases the
fraction, f, of the total stellar sample included in some identified
ppv groups; however, we do not detect a clear difference in the
total number of groups. No significant difference in the results
is found by changing n or dv.

As before, we run the algorithm to artificially generate
distributions in ppv space (see Section 3.1), and investigate
different diagnostics to test the significance of the results. This
is summarized in Table 2. For each parameter choice we
compare the number of groups Ngroups isolated from our data
with the mean and standard deviation of this quantity from the
random experiments; sNgroups in this context is the measured
excess, in standard deviations, from the result from random
experiments. Similarly, sf is the departure in standard
deviations for the fraction of stars belonging to some structure
in ppv. Last, we use a Kolmogorov-Smirnov (KS) test to verify
if two cumulative distribution functions are significantly
different between our measured values and those from
randomly generated distributions. Specifically, we list p1 as
the KS probability (where a low number indicates a significant
difference) of the distribution of peak local densities in ppv of
the identified groups, and p2 that of the distribution of number
of stars in the detected Ngroups. Results show that for high values
of r0, the statistical significance is relatively poor or absent.
Decreasing r0, thus enabling a larger number of sources to be
labeled as clustered, especially in regions of low density such
as L1641, leads to higher significance. Specifically, we identify
a number of ppv structures 2–4σ larger than in random

Figure 7. Similar to Figure 6, but now showing an example of the ppv connected structures method, described in Section 3.2, in this case, for r = 0.30
pc−2 (km s−1)−1, n = 5, and d = 8v km s−1 (see the text). The top panels show the center of each structure, as the mean of positions and vr of the stars associated with
it. The area of the circles in the top panel is proportional to the number of stars in each group, which in turn are shown in the bottom panels. The colors, corresponding
between the different panels for each structure, are arbitrary to facilitate the visual distinction between structures.

8

The Astrophysical Journal, 845:105 (14pp), 2017 August 20 Da Rio et al.



experiments, a fraction s~f 2 higher, and probabilities p1 and
p2 lower than 1% in most cases.

The fact that we detect statistically significant overdensities
in ppv space by adopting two conceptually different methods
(Sections 3.1 and 3.2) is highly indicative that kinematic
substructure in Orion remains present, and thus may be a tracer
of the original turbulent motions of the molecular material in
the parental cloud. Future observations (i.e., multi-epoch) will
help improve the vr measurements, especially enabling the
identification of binaries. Proper motion measurements from
the final GAIA survey will be also useful to study kinematic
substructures in Orion. The degree of kinematic substructure
that we measure will also be compared to the results from
theoretical/numerical models of star cluster formation under
different scenarios (Wu et al. 2017a, 2017b).

4. Expansion of the ONC

Limited to the ONC region of the system, we find evidence
for a correlation between radial velocities and extinction, in that
sources with higher AV are statistically more redshifted than
less deeply embedded members. This is shown in Figure 8,
where the offset Dvr from the local mean radial velocity
(computed as in Section 2 and shown in Figure 3) is plotted
against AV, for all members within a circular aperture of 1
centered on the Trapezium region that defines the center of the
ONC (e.g., Da Rio et al. 2014b). We also restricted our sample
to sources with <T 5000eff K, as for higher temperatures the
stellar parameters—hence AV, are more uncertain. A linear
fit through the data shows an increase in vr of about
∼0.1 km s−1/AV. A randomization test through the permutation
of the values along the -y axis of this diagram showed that this
correlation is significant at a s = 3.1 level. The correlation and
its significance level both remain unchanged when we vary the
aperture diameter between 0°.5 and 2°; the significance reduces
at smaller apertures because of low number statistics, and at
larger distances outside the ONC.

Since AV is a tracer of the depth of a star along the line of
sight—even though the distribution and volume density of the
dust is spatially inhomogeneous—this result suggests a global
expansion along the line of sight. We exclude that this
correlation may be a spurious outcome of correlated systematic
effects in the extraction of vr and AV since in Cottaar et al.
(2015) an opposite trend is observed in IC 348 using APOGEE

data and identical data reduction and extraction of parameters
as in this work. From the relation D D ~( )v A 0.1r V
km s−1/AV it follows that the central 90% of the population
along the line of sight, with  A0 7.4V , shows an overall vr
spread of ∼0.7 km s−1, or a net maximum expansion from the
cluster midplane of ∼0.35 km s−1. The reddening distribution
is highly asymmetric, with a median AV—which could be
associated with the cluster midplane—of 1.3 mag. Note that
this fact is not only seen in our IN-SYNC survey, but in all
previous studies reaching higher completeness and AV

(Robberto et al. 2010; Da Rio et al. 2014b, e.g.,); thus it is
not the result of completeness limits of this work. This implies
that the volume density of the molecular material increases
along the line of sight. We are unable to explicitly measure the
net velocity offset of two halves of the population from this
midplane, as in the low-extinction limit, we do not measure any
correlation of vr with AV. This, however, is likely because the
typical uncertainty in AV is ∼0.4 at all extinctions. Thus, for
low AV , the relative uncertainty is particularly high, flattening
any vr–AV correlation due to regression dilution.
We look for variations in the measured correlation indicating

expansion with mass and age, and divide the stellar samples
into two mass ranges ( < M M0.3 and < < M M M0.3 1 )
and two age ranges on both sides of the median cluster ages.
These parameters have been obtained from the Siess et al.
(2000) evolutionary models (IV). Although there is a hint that
lower-mass stars show a large velocity gradient with AV, and so
do older stars compared to younger ones (see Figure 9), these
differences are not statistically significant ( s~1 ). Future data
are needed to confirm or refute a mass and age dependence of
the expansion of the ONC.
Finally, no correlation between radial velocity and extinction

is found along the filament south of the ONC (L1641-N and
L1641-S).

5. Velocity Dispersion and Virial State

We obtained the stellar velocity dispersion sv for different
samples of the Orion A population in a similar fashion as in
Paper II and III for NGC 1333 and IC 348, respectively, in
Perseus. Specifically, we consider the observed distribution of
vr as well as the measurement uncertainties in radial velocity,

Table 2
Groups of Stars Identified in ppv Space and Comparison with Random Tests

r0 n dv Ngroups sNgroups f sf p1 p2

1 5 2 36 0.4 30.22 0.87 0.285 0.372
4 35 0.3 31.2 0.79 0.84 0.105
8 36 0.6 30.5 0.76 0.291 0.204

10 2 27 −0.5 38.19 −0.76 0.329 0.626
4 25 −0.7 41.52 −0.53 0.183 0.003
8 23 −1.2 45.26 −1.11 0.019 0.533

0.3 5 2 33 2.6 47.0 2.71 0.003 0.071
4 30 2.2 51.73 1.93 0.173 0.245
8 36 3.3 43.42 1.94 0.007 0.018

10 2 29 2.8 52.62 1.88 0.0 0.008
4 34 4.7 45.12 1.98 0.002 0.001
8 31 3.2 49.87 1.68 0.0 0.009

Note. See text.
Figure 8. Dependence of the vr offset from the local mean vr on extinction AV

for a circular aperture of 1 in diameter centered on the ONC, limited to
members with <T 5000eff K. The red line is the linear fit through the data.
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and the contribution from unresolved binarity. Unlike the
IN-SYNC survey in Perseus, our vr values have only one epoch
for the majority of our stellar sample, therefore our binarity
correction has been performed statistically. We adopt a flat
mass ratio distribution (Reggiani & Meyer 2013), a flat
eccentricity distribution (Duchêne & Kraus 2013) over the
whole mass range, and the log-normal period distribution from
Raghavan et al. (2010). Using the tool VELBIN (Paper II), we
then generated a large number of binary orbits randomly drawn
from these parameter distributions, and assuming random
orientations, we obtained the one-dimensional distribution of
radial velocities of the primary. We assumed a binary fraction

=f 0.44bin , as determined by Raghavan et al. (2010) for solar-
type stars.

Considering a sample of vr and associated errors dvr, we
generate a large number of intrinsic velocity dispersions sv as
normal distribution of varying standard deviation. We then
convolve these with the contribution due to measurement
errors; to this end, we sum the individual distributions of errors,
all assumed normal, for each star. Since stars have different
errors, the resulting distribution is not a Gaussian. Last, we
consider the one-dimensional distribution of vr offsets from
binaries for =f 1bin , scale it down to our value of fbin,
complement it with -( )f1 bin zeros representing single stars,
and convolve it to the intrinsic sv plus measurement error
distributions. The resulting simulated distributions as well as
the measured vr distribution are fitted with Gaussian distribu-
tions after removing outliers at s3 , and the best match is found.
This naturally represents the best velocity dispersion sv, which,
convolved with contributions from errors and binaries,
reproduced the observed vr distribution. An example of this
procedure is shown in Figure 10 for a sample of members
centered on the ONC within a radius of 0 .3 or ∼2.2 pc.

Generally, the contribution of the measurement errors is
far smaller than both the observed vr distribution and the
intrinsic sv. For example, the distribution of vr offsets due to
measurement errors shown in Figure 10 is such that 68% of the
data (i.e., equivalent to a 1σ interval) is in the range
±0.38 km s−1. Furthermore, as pointed out in Paper III, the
contribution from binaries is even smaller (68% of vr offsets in
the range ±0.10 km s−1 for =f 0.44bin ). Therefore our results
are not very sensitive to the assumptions made for the binary
population, i.e., the distribution of binary parameters and fbin.

This fact would be less the case for high-mass stars, both
because of a higher binary fraction, and possibly because of a
lower intrinsic sv from dynamical energy equipartition.
However, our sample is dominated by low-mass stars, with
95% of members with a mass lower than 2 Me.
Figure 11 shows the derived corrected sv in different bins in

declination along the Orion A cloud. The solid line represents
the dispersion as is, adopting the measured vr for all stars in
each bin. We have also corrected for the spatial gradients in vr
along the region (see Section 2), which if not accounted for,
may lead to an overestimate of the overall sv in a region. To
this end, we adopted the radial velocities as the difference, star
by star, between the measured vr and the local mean radial
velocity in that position, as computed in Section 2 and shown
in Figure 3, second panel. We refer to these two dispersions as
“standard” and “gradient-corrected.” The result is shown in
Figure 11 as a dashed line. Overall, sv varies in the range
1–2.5 km s−1. The most striking feature is a broad peak in sv in
L1641N; this is consistent with the detected asymmetry of the
velocity distribution and the presence of kinematic substructure
in this region, possibly indicating spatial structure along the

Figure 9. Same as Figure 8, but dividing the population into ranges in masses (left panel) and ages (right panel).

Figure 10. Example of the extraction of the velocity dispersion sv from the
observed vr distribution, correcting for vr uncertainties and unresolved binaries
(see text). The distribution shown is for the ONC population, within a circle of
0 . 3 (∼2.2 pc) in radius.
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line of sight (see Section 3). Thus a larger sv could be the result
of a superposition of stellar systems with relative bulk mean
motions. Just south of the ONC, we detect the most prominent
drop in velocity dispersion. The ONC also reveals itself as a
local peak in sv at values 2–2.5 km s−1. Moving north of the
ONC, in the region of NGC 1980 and NGC 1977/OMC 2–3,
sv remains roughly constant at values ∼2 km s−1. These results
are in fair agreement with the optical radial velocity survey of
Tobin et al. (2009), which covered a declination range

d-  < < - 6 4 . The velocity dispersion of 13CO gas is also
shown in Figure 11; the stellar sv is higher than that of the gas
the regions of L1641N and around the ONC, whereas between
these two, as well as in the southern end of the filament
(L1641S), stars show velocity dispersions that are in more
agreement with the CO.

Next we focus in more detail on the ONC. Figure 12 shows
the radial dependence of sv from the center of the cluster.
Again, we compute both the “standard” and “gradient-
corrected” dispersions. These average at ∼2.1 and
∼1.7 km s−1, respectively. We note, however, that given the
small spatial size of the ONC compared to the Orion A cloud,
or the width of the declination bins in Figure 11 (3 pc
correspond to ∼0°.4), large-scale gradients in vr have a smaller
effect on the measured velocity distribution. Still, we do
compute the “gradient-corrected” sv along with the “standard
one.” Our measured standard sv is in fairly good agreement
with the dispersion of ∼2.3 km s−1 measured in the ONC by of
Tobin et al. (2009), as well as the stellar proper motion study of
Jones & Walker (1988); none of these studies, however, had
derived sv after accounting for spatial variations in the mean sv,
hence our lower value for the gradient-corrected dispersion.

In Figure 12 we also show the predicted velocity dispersion
profile required for dynamical virial equilibrium, as derived in
Da Rio et al. (2014b) from the total mass profile of the ONC.
This was obtained by combining estimates of the total stellar
mass profile from censuses of stellar parameters from the
literature, complemented by X-ray and infrared surveys, and
estimates of the gas volume density within the ONC.
Specifically, the stellar component describes a power-law
profile slightly steeper than a single isothermal sphere, and
the gas was assumed to be at a constant volume density of
22 Me pc−3. This gas density was derived from the stellar AV

distribution, which averages at ~A 3V mag, and not from, e.g.,
the total column density of molecular material; this is because
the vast majority of the ISM along the line of sight of the ONC,
reaching up to 100 mag (Bergin et al. 1996; Lombardi et al.
2014), lies behind the cluster. The gas contribution is negligible
compared to the stellar mass up to a few half-mass radii
( r 1h pc, Da Rio et al. 2014b), and is responsible for the
increase of the equilibrium sv at increasing distances from the
center. The mean sv in the ONC required for virial equilibrium
based on the total mass is ∼1.73 km s−1 (Da Rio et al. 2014b),
which, compared to the measured 2.2 km s−1, indicates that the
ONC is supervirial with a virial parameter (Bertoldi & McKee
1992) a  1.5vir . On the other hand, our gradient-corrected sv
indicates a fully virialized system. The predicted virial velocity
is not without uncertainties: in Figure 12 we also show the
range in the radial profile of the expected virial velocities
assuming an uncertainty of 30% in the estimated mass. This
uncertainty is likely quite large for the stellar component, being
derived from deep samples at different wavelengths. On the
other hand, a higher uncertainty may come from the gas
component, especially if the distribution of the material along
the line of sight—hence the conversion from column densities
to volume density—is quite different than in the orthogonal
directions, specifically, if the system is more flattened along the
line of sight.
Our results show that the ONC population appears in very

good agreement with a virial state when considering the
gradient-corrected sv, i.e., correcting for local variations in the
mean vr. On the other hand, adopting the standard sv, stars are
slightly supervirial. Even in this case, however, velocities are
well into the boundness regime (s s= 2bound vir).
Even though our results are consisten with a virial state for

the ONC, we comment on the scenario of a moderately
supervirial scenario. This would be compatible with our
presented evidence that the cluster is currently expanding (see
Section 4); however, a small population of expanding stars can
be present even with the bulk of the cluster being virialized.
This could be attributed to some missing mass from a recent
gas expulsion from the cluster location. Numerical simulations
(e.g., Farias et al. 2015), however, have shown that the virial

Figure 11. Velocity dispersion sv as a function of declination. The blue solid
line represents the overall dispersion, corrected for measurement errors and
binarity, in each declination bin. The dashed blue line is the same with an
additional correction for spatial gradients in vr in each sample (see text). The
red solid line is the velocity dispersion of the gas from the survey of Nishimura
et al. (2015).

Figure 12. Velocity dispersion sv for the ONC, measured in radial annuli at
increasing distance from the cluster center. Note that 4 pc corresponds to
~ 0 . 55 in radius. As in Figure 11, the green line is the corrected sv based on the
actual vr, the blue line is computed by removing the large-scale spatial gradient
in vr. The purple line represents the equilibrium velocity predicted from the
total mass from Da Rio et al. (2014b), and the green dotted line plots the
uncertainty assuming a 30% mass uncertainty.
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state of a cluster fluctuates significantly during the early
evolution of a stellar system, and the fraction of the stellar
population that remains subsequently bound strongly depends
on the dynamical state at the time of gas removal. Additional
data, such as a scheduled continuation of the IN-SYNC Orion
survey, to increase the stellar sample and obtain additional
epochs for our IN-SYNC targets, as well proper motions from
HST photometry (HST program GO13826, PI M. Robberto) or
GAIA for the bright end of the population, will allow us to
better characterize this potential expansion of the ONC. It is
also important to stress that a possible infall of material (gas
and stars) along the filament may affect the future fate of the
system. In fact, Tobin et al. (2009) suggested that the large
velocity gradient, for both stars and gas, that is observed to the
north of the ONC (see Figure 1) could indicate an infall of
material toward the ONC.

On the other hand, the ONC being close to or fully virialized,
is compatible with the evidence that the system is dynamically
evolved (Da Rio et al. 2014b). The fact that sv for stars in the
ONC is larger than the molecular gas dispersion (see Figure 11)
is not of concern. This is because, as anticipated earlier, most of
the molecular material in this region of the cloud is located
behind the young stellar population, as confirmed by the very
low extinction affecting the cluster. We do not find variations
of sv as a function of stellar mass in the ONC. However, we
stress that the IN-SYNC survey does not cover massive stars,
as the sample is limited to below a few M . We do measure a
slight variation with age: stars younger than the median age
show a sv 0.2 km s−1 smaller than older stars; this is significant
only at a 1.5σ level, however, and could originate from biases.
On the one hand, older PMS stars are fainter and thus affected
by larger errors; small systematics in the estimate of the errors
in vr may therefore be responsible for the detected difference.
Moreover, as shown in Da Rio et al. (2012), at fainter
luminosities contamination from background sources increases.
Even though we restricted our analysis to known or probable
members, these membership estimates are heterogenous and
based on methods with a range of reliabilities in excluding false
candidates.

Returning to the L1641, south of the ONC, Figure 11
showed that the stellar velocity dispersion in the northern
region (L1641N) is in the range 2–2.5 km s−1, not very
dissimilar from that of the ONC, whereas sv drops to values
∼1 km s−1 in L1641S. In both these regions, the total density is
much lower than that in the ONC, so that the stellar population
should not be bound by its own mass. The average stellar
density at declinations d < - 6 is ∼10 pc−2. When we assume
a depth of the population along the line of sight comparable to
the width of the filament in the plane of the sky (~ 1 .5 or 10
pc), this results in a stellar number volume density of n 1
pc−3 or

*
r < M1 pc−3. This is more than two orders of

magnitude lower than in the ONC, where
*
r  M250 pc−3

within rh.
As for the gas density, we adopt the extinction map from

Lombardi et al. (2014); within the Orion A southern filament
(d < - 6 ), the mean extinction is A 1V mag. As shown in
Da Rio et al. (2014b), this corresponds to a mass column
density of ~ M22 pc, which again, assuming a depth of the
filament of ∼10 pc, results in a volume density of molecular
material ~ M2 pc−3.

We compare these estimates with the condition for virial
equilibrium of a filamentary structure from Fiege & Pudritz

(2000), i.e.,

s ~ ( )Gm

2
, 1vir

l

where ml is the mass per unit of length. Considering a width of
the L1641 filament of 10 pc, we obtain a typical

~ m M200l pc−1, resulting in s  0.65vir km s−1. This is
smaller than our measured sv throughout the L1641 region. We
perform a more rigorous analysis of these quantities in different
positions of the filament. This is shown in Figure 13, where the
displayed quantities, as a function of declination, have been
computed within moving strips of 1 pc in width in the plane of
the sky perpendicular to the filament. The width of the filament
has been measured by imposing lateral boundaries where the
extinction drops to AV = 0.3 mag according to the map of
Lombardi et al. (2014). For the stellar masses at each position,
we adopted the values derived in Paper IV; for guidance, we
also include the results from doubling the stellar masses, as an
extreme case to account for residual incompleteness in our IN-
SYNC sample. This is largely irrelevant, as the total mass is gas
dominated.
The value s ~ 0.6vir km s−1 is roughly constant along the

filament; such a virial dispersion is several times smaller than
the observed sv in L1641N, indicating that this region is highly
unbound. As shown in Paper IV, here the dust extinction
affecting stars is <A 1V mag, and the velocity dispersion is
highly asymmetric (Section 2). Therefore the population here is
mostly in the foreground of the remaining molecular material,

Figure 13. From top to bottom, as a function of declination: (a) width of the
filament, defined where A 0.3V AV; (b) mass per unit of length ml; (c) virial
velocity dispersion svir from Equation (1), compared with the observed
dispersions for gas and stars; and (d) crossing time expected for svir compared
to the measured sv.
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and possibly populated by substructured groups along the line
of sight, showing an overall velocity dispersion consistent with
being unbound. On the other hand, sv in L1641S, while being
somewhat higher than the virial one, is not incompatible with
it, given the uncertainties.

Assuming the present sv, the crossing time tcross (see
Figure 13) ranges from ∼3 Myr in L1641N to ∼6 Myr in
L1641S. This is somewhat older than than the age of the
system and is therefore compatible with the fact that the young
population remains fairly well spatially associated with the
molecular material. As we emphasized above, however, our
poor knowledge of the distribution of material, and in particular
molecular gas, along the line of sight may affect our estimate
for the virial equilibrium velocity predicted for L1641.

If the filament is regarded as being a single dynamic entity,
then this can explain why the 13CO velocity dispersion is quite
close to the expected viral velocity dispersion. However, then it
unclear how the stellar component would have gained such a
higher kinetic energy. First, the relatively high dynamical time
in the region grants that the stellar population is dynamically
young, thus stellar interactions and binary star evolution are nor
responsible for the observed velocity dispersion. Also, the
L1641 region is deficient of massive stars (Hsu et al. 2012,
2013), thus a rapid removal of gas from stellar feedback should
be ruled out. Stutz & Gould (2016) recently proposed a model
that aims to explain how velocities of young stars can be larger
than that of dense gas. They noted that young, but already-
formed, stars in Orion A appear more spread out than forming
protostars both in the plane of the sky, as well as in their radial
velocities (based on IN-SYNC data). The protostars are
spatially and kinematically associated to the filaments of
molecular gas. They suggested that magnetically induced
tangential oscillation of the filament may be taking place. In
this scenario, stars are formed coupled with the dense gas, and
then gently ejected as the molecular material oscillates back to
its original position. However, it is difficult to see how this
scenario could lead to observed line-of-sight velocity disper-
sions of the 13CO traced dense gas that are consistently much
smaller than those of the ejected stars along the entire filament.

6. Summary and Conclusions

We have continued our analysis of the IN-SYNC Orion
survey, a high-resolution near-infrared spectroscopic survey of
about 2700 stars in the Orion A star-forming region, that was
obtained with the SDSS APOGEE spectrograph. It covers ~ 6
in the plane of the sky, or ∼40 pc, thus covering the entire
cloud from NGC 1977, the ONC, L1641N down to L1641S.
We cover a mass range from ~ M0.1 to a few solar masses
and extinctions up to about 20 mag. In the previous paper of
this series (IV), we presented the derived stellar parameters,
studied the age and age spread of the system, the reddening
law, and assigned new membership estimates for sources
without a previous membership confirmation.

Here we have focussed on the stellar kinematics and
dynamics in the region, from the analysis of radial velocities.
Here we summarize the main results.

1. We find that young stars have average radial velocities
that are very similar to those of the molecular gas
throughout the region as traced by CO, following a
∼10 km s−1 variation from north to south, with the

northern region redshifted and the southern region
blueshifted.

2. In the central part of the cloud, corresponding to L1641N,
stars appear slightly blueshifted with respect to the gas. In
this region, however, stars are older and affected by little
extinction, suggesting that the molecular gas is located
behind the population along the line of sight, and
receding with respect to the stars.

3. In the region of L1641N, the distribution of radial
velocities vr appears asymmetric, with a broader blue-
shifted tail. We interpret this as a possible superposition
of stellar substructures along the line of sight in relative
motion with each other.

4. We find spatial and kinematic substructures in the
young population throughout the region, as statistically
significant overdensities in position–position–velocity
space. These may indicate groupings of stars that have
preserved the turbulent motions of their natal gas. In the
L1641N region, these structures show the largest relative
offsets in radial velocity, corroborating the possibility of a
highly structured stellar distribution along the line of
sight. The ONC, on the other hand, does not present
significant kinematic substructure, in agreement with
previous findings for this system, which reported that it
has undergone some degree of dynamical evolution,
which is expected to lead to phase mixing of stellar orbits.

5. We find indications that the ONC may currently be
expanding, from the correlation between radial velocities
and AV, with the low-extinction end of the population,
which is closer to the observer along the line of sight,
blueshifted, and, on the contrary, the high-extinction stars
redshifted.

6. In the ONC, we measure a velocity dispersion s  2.2v

km s−1, when considering the measured vr, in agreement
with previous findings in the region based on radial
velocities or proper motions. On the other hand, when
correcting for spatial variations in the mean vr—which is
critical for large-scale gradients in vr, but does marginally
affect the results at small scales—sv decreases to
∼1.7 km s−1. Comparing these values with estimates of
the total mass in the system, they result in the ONC being
slightly supervirial (but bound), or in good agreement
with a virialized state, respectively. Therefore we cannot
exclude that the ONC has reached virial equilibrium.

7. The southern part of the Orion A cloud, L1641, shows
two separate behaviors. The northern part, L1641N, has a
velocity dispersion in the range 2–2.5 km s−1, similar to
that of the ONC. However, considering that the density of
stars and gas is much lower (a few M pc−3) than in the
ONC, this is a few times higher than the velocity
dispersion required for (filamentary) virial equilibrium
(∼0.6 km s−1), pointing to an unbound population. The
low AV in this region suggests that stars have decoupled
from the gas, which is located mostly in the background
and had velocities consistent with a virial. In the southern
end of the region, L1641S, on the other hand, sv is lower
and in approximate agreement with (or slightly greater
than) both a virial state and the velocity dispersion of
the gas.
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