14 research outputs found

    GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health.

    Get PDF
    Funder: Department of HealthMosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. Previous genetic studies have focussed on identifying common variants associated with LOY, which we now extend to rarer, protein-coding variation using exome sequences from 82,277 male UK Biobank participants. We find that loss of function of two genes-CHEK2 and GIGYF1-reach exome-wide significance. Rare alleles in GIGYF1 have not previously been implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher susceptibility to LOY (OR = 5.99 [3.04-11.81], p = 1.3 × 10-10). These same alleles are also associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes (OR = 6.10 [3.51-10.61], p = 1.8 × 10-12), 4 kg higher fat mass (p = 1.3 × 10-4), 2.32 nmol/L lower serum IGF1 levels (p = 1.5 × 10-4) and 4.5 kg lower handgrip strength (p = 4.7 × 10-7) consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These associations are mirrored by a common variant nearby associated with the expression of GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism and metabolic health

    Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint

    Get PDF
    Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a “prone-to-autophosphorylate” Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells

    Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus

    Get PDF
    : Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success

    Influence of Three Different Surgical Techniques on Microscopic Damage of Saphenous Vein Grafts—A Randomized Study

    No full text
    Background and Objectives: The saphenous vein is one of the most common used grafts (SVG) for surgical revascularization. The mechanism of the SVGs occlusion is still unknown. Surgical preparation techniques have an important role in the early and late graft occlusion. Our study analyzed the influence of the three different surgical techniques on the histological and immunohistochemical characteristics of the vein grafts. Methods: Between June 2019 and December 2020, 83 patients who underwent surgical revascularization were prospectively randomly assigned to one of the three groups, according to saphenous vein graft harvesting (conventional (CVH), no-touch (NT) and endoscopic (EVH)) technique. The vein graft samples were sent on the histological (hematoxylin-eosin staining) and immunohistochemical (CD31, Factor VIII, Caveolin and eNOS) examinations. Results: The CVH, NT, and EVH groups included 27 patients (mean age 67.66 ± 5.6), 31 patients (mean age 66.5 ± 7.4) and 25 patients (mean age 66 ± 5.5), respectively. Hematoxylin-eosin staining revealed a lower grade of microstructural vein damage in the NT group (2, IQR 1-2) in comparison with CVH and EVH (3, IQR 2-4), (4, IQR 2-4) respectively (p p = 0.02, FVIII, p p = 0.001, and eNOS, p = 0.003). Conclusion: The best preservation of the structural vein integrity was in the NT group, while the lowest rate of leg wound complication was in the EVH group. These facts increase the interest in developing and implementing the endoscopic no-touch technique

    Damaging missense variants in IGF1R implicate a role for IGF-1 resistance in the etiology of type 2 diabetes.

    No full text
    Type 2 diabetes (T2D) is a heritable metabolic disorder. While population studies have identified hundreds of common genetic variants associated with T2D, the role of rare (frequency < 0.1%) protein-coding variation is less clear. We performed exome sequence analysis in 418,436 (n = 32,374 T2D cases) individuals in the UK Biobank. We identified previously reported genes (GCK, GIGYF1, HNF1A) in addition to missense variants in ZEB2 (n = 31 carriers; odds ratio [OR] = 5.5 [95% confidence interval = 2.5-12.0]; p = 6.4 × 10-7), MLXIPL (n = 245; OR = 2.3 [1.6-3.2]; p = 3.2 × 10-7), and IGF1R (n = 394; OR = 2.4 [1.8-3.2]; p = 1.3 × 10-10). Carriers of damaging missense variants within IGF1R were also shorter (-2.2 cm [-1.8 to -2.7]; p = 1.2 × 10-19) and had higher circulating insulin-like growth factor-1 (IGF-1) protein levels (2.3 nmol/L [1.7-2.9]; p = 2.8 × 10-14), indicating relative IGF-1 resistance. A likely causal role of IGF-1 resistance was supported by Mendelian randomization analyses using common variants. These results increase understanding of the genetic architecture of T2D and highlight the growth hormone/IGF-1 axis as a potential therapeutic target.This work was funded by the Medical Research Council (Unit programs: MC_UU_12015/2, MC_UU_00006/2, MC_UU_12015/1, and MC_UU_00006/1). This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). S.L. is supported by a Wellcome Trust Clinical PhD Fellowship (225479/Z/22/Z). S.O. is supported by a Wellcome Investigator Award (214274/Z/19/Z)

    Genetic insights into biological mechanisms governing human ovarian ageing

    No full text
    Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease

    Understanding the genetic complexity of puberty timing across the allele frequency spectrum

    No full text
    Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ∼800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ∼11 and ∼14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ∼220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83 , which we demonstrate amplifies signaling of MC3R , a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease. </p
    corecore