798 research outputs found

    Border Screening for SARS

    Get PDF
    Screening at national borders may not be effective in controlling SARS spread

    Interplay of Static and Dynamic Disorder in the Mixed-Metal Chalcohalide Sn2SbS2I3

    Get PDF
    Chalcohalide mixed-anion crystals have seen a rise in interest as "perovskite-inspired materials" with the goal of combining the ambient stability of metal chalcogenides with the exceptional optoelectronic performance of metal halides. Sn2SbS2I3 is a promising candidate, having achieved a photovoltaic power conversion efficiency above 4%. However, there is uncertainty over the crystal structure and physical properties of this crystal family. Using a first-principles cluster expansion approach, we predict a disordered room-temperature structure, comprising both static and dynamic cation disorder on different crystallographic sites. These predictions are confirmed using single-crystal X-ray diffraction. Disorder leads to a lowering of the bandgap from 1.8 eV at low temperature to 1.5 eV at the experimental annealing temperature of 573 K. Cation disorder tailoring the bandgap allows for targeted application or for the use in a graded solar cell, which when combined with material properties associated with defect and disorder tolerance, encourages further investigation into the group IV/V chalcohalide family for optoelectronic applications

    Interplay of Static and Dynamic Disorder in the Mixed-Metal Chalcohalide Sn2SbS2I3

    Get PDF
    Chalcohalide mixed-anion crystals have seen a rise in interest as “perovskite-inspired materials” with the goal of combining the ambient stability of metal chalcogenides with the exceptional optoelectronic performance of metal halides. Sn2SbS2I3 is a promising candidate, having achieved a photovoltaic power conversion efficiency above 4%. However, there is uncertainty over the crystal structure and physical properties of this crystal family. Using a first-principles cluster expansion approach, we predict a disordered room-temperature structure, comprising both static and dynamic cation disorder on different crystallographic sites. These predictions are confirmed using single-crystal X-ray diffraction. Disorder leads to a lowering of the bandgap from 1.8 eV at low temperature to 1.5 eV at the experimental annealing temperature of 573 K. Cation disorder tailoring the bandgap allows for targeted application or for the use in a graded solar cell, which when combined with material properties associated with defect and disorder tolerance, encourages further investigation into the group IV/V chalcohalide family for optoelectronic applications

    Identifying the domains of context important to implementation science: a study protocol

    Get PDF
    Background There is growing recognition that “context” can and does modify the effects of implementation interventions aimed at increasing healthcare professionals’ use of research evidence in clinical practice. However, conceptual clarity about what exactly comprises “context” is lacking. The purpose of this research program is to develop, refine, and validate a framework that identifies the key domains of context (and their features) that can facilitate or hinder (1) healthcare professionals’ use of evidence in clinical practice and (2) the effectiveness of implementation interventions. Methods/design A multi-phased investigation of context using mixed methods will be conducted. The first phase is a concept analysis of context using the Walker and Avant method to distinguish between the defining and irrelevant attributes of context. This phase will result in a preliminary framework for context that identifies its important domains and their features according to the published literature. The second phase is a secondary analysis of qualitative data from 13 studies of interviews with 312 healthcare professionals on the perceived barriers and enablers to their application of research evidence in clinical practice. These data will be analyzed inductively using constant comparative analysis. For the third phase, we will conduct semi-structured interviews with key health system stakeholders and change agents to elicit their knowledge and beliefs about the contextual features that influence the effectiveness of implementation interventions and healthcare professionals’ use of evidence in clinical practice. Results from all three phases will be synthesized using a triangulation protocol to refine the context framework drawn from the concept analysis. The framework will then be assessed for content validity using an iterative Delphi approach with international experts (researchers and health system stakeholders/change agents). Discussion This research program will result in a framework that identifies the domains of context and their features that can facilitate or hinder: (1) healthcare professionals’ use of evidence in clinical practice and (2) the effectiveness of implementation interventions. The framework will increase the conceptual clarity of the term “context” for advancing implementation science, improving healthcare professionals’ use of evidence in clinical practice, and providing greater understanding of what interventions are likely to be effective in which contexts

    The care unit in nursing home research: Evidence in support of a definition

    Get PDF
    Abstract Background Defining what constitutes a resident care unit in nursing home research is both a conceptual and practical challenge. The aim of this paper is to provide evidence in support of a definition of care unit in nursing homes by demonstrating: (1) its feasibility for use in data collection, (2) the acceptability of aggregating individual responses to the unit level, and (3) the benefit of including unit level data in explanatory models. Methods An observational study design was used. Research (project) managers, healthcare aides, care managers, nursing home administrators and directors of care from thirty-six nursing homes in the Canadian prairie provinces of Alberta, Saskatchewan and Manitoba provided data for the study. A definition of care unit was developed and applied in data collection and analyses. A debriefing session was held with research managers to investigate their experiences with using the care unit definition. In addition, survey responses from 1258 healthcare aides in 25 of the 36 nursing homes in the study, that had more than one care unit, were analyzed using a multi-level modeling approach. Trained field workers administered the Alberta Context Tool (ACT), a 58-item self-report survey reflecting 10 organizational context concepts, to healthcare aides using computer assisted personal interviews. To assess the appropriateness of obtaining unit level scores, we assessed aggregation statistics (ICC(1), ICC(2), η2, and ω2), and to assess the value of using the definition of unit in explanatory models, we performed multi-level modeling. Results In 10 of the 36 nursing homes, the care unit definition developed was used to align the survey data (for analytic purposes) to specific care units as designated by our definition, from that reported by the facility administrator. The aggregation statistics supported aggregating the healthcare aide responses on the ACT to the realigned unit level. Findings from the multi-level modeling further supported unit level aggregation. A significantly higher percentage of variance was explained in the ACT concepts at the unit level compared to the individual and/or nursing home levels. Conclusions The statistical results support the use of our definition of care unit in nursing home research in the Canadian prairie provinces. Beyond research convenience however, the results also support the resident unit as an important Clinical Microsystem to which future interventions designed to improve resident quality of care and staff (healthcare aide) worklife should be targeted

    Toward High Performance Computing Education

    Get PDF
    High Performance Computing (HPC) is the ability to process data and perform complex calculations at extremely high speeds. Current HPC platforms can achieve calculations on the order of quadrillions of calculations per second with quintillions on the horizon. The past three decades witnessed a vast increase in the use of HPC across different scientific, engineering and business communities, for example, sequencing the genome, predicting climate changes, designing modern aerodynamics, or establishing customer preferences. Although HPC has been well incorporated into science curricula such as bioinformatics, the same cannot be said for most computing programs. This working group will explore how HPC can make inroads into computer science education, from the undergraduate to postgraduate levels. The group will address research questions designed to investigate topics such as identifying and handling barriers that inhibit the adoption of HPC in educational environments, how to incorporate HPC into various curricula, and how HPC can be leveraged to enhance applied critical thinking and problem solving skills. Four deliverables include: (1) a catalog of core HPC educational concepts, (2) HPC curricula for contemporary computing needs, such as in artificial intelligence, cyberanalytics, data science and engineering, or internet of things, (3) possible infrastructures for implementing HPC coursework, and (4) HPC-related feedback to the CC2020 project

    Effect of a web-based chronic disease management system on asthma control and health-related quality of life: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma is a prevalent and costly disease resulting in reduced quality of life for a large proportion of individuals. Effective patient self-management is critical for improving health outcomes. However, key aspects of self-management such as self-monitoring of behaviours and symptoms, coupled with regular feedback from the health care team, are rarely addressed or integrated into ongoing care. Health information technology (HIT) provides unique opportunities to facilitate this by providing a means for two way communication and exchange of information between the patient and care team, and access to their health information, presented in personalized ways that can alert them when there is a need for action. The objective of this study is to evaluate the acceptability and efficacy of using a web-based self-management system, My Asthma Portal (MAP), linked to a case-management system on asthma control, and asthma health-related quality of life.</p> <p>Methods</p> <p>The trial is a parallel multi-centered 2-arm pilot randomized controlled trial. Participants are randomly assigned to one of two conditions: a) MAP and usual care; or b) usual care alone. Individuals will be included if they are between 18 and 70, have a confirmed asthma diagnosis, and their asthma is classified as not well controlled by their physician. Asthma control will be evaluated by calculating the amount of fast acting beta agonists recorded as dispensed in the provincial drug database, and asthma quality of life using the Mini Asthma Related Quality of Life Questionnaire. Power calculations indicated a needed total sample size of 80 subjects. Data are collected at baseline, 3, 6, and 9 months post randomization. Recruitment started in March 2010 and the inclusion of patients in the trial in June 2010.</p> <p>Discussion</p> <p>Self-management support from the care team is critical for improving chronic disease outcomes. Given the high volume of patients and time constraints during clinical visits, primary care physicians have limited time to teach and reinforce use of proven self-management strategies. HIT has the potential to provide clinicians and a large number of patients with tools to support health behaviour change.</p> <p>Trial Registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN34326236">ISRCTN34326236</a>.</p
    corecore