214 research outputs found
Protein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1
Background: Syntaxin-binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype–phenotype correlations. Methods: We report 11 patients with pathogenic de novo mutations in STXBP1 identified in the first 4293 trios of the Deciphering Developmental Disorder (DDD) study, including six missense variants. We analyzed the structural locations of the pathogenic missense variants from this study and the literature, as well as population missense variants extracted from Exome Aggregation Consortium (ExAC). Results: Pathogenic variants are significantly more likely to occur at highly conserved locations than population variants, and be buried inside the protein domain. Pathogenic mutations are also more likely to destabilize the domain structure compared with population variants, increasing the proportion of (partially) unfolded domains that are prone to aggregation or degradation. We were unable to detect any genotype–phenotype correlation, but unlike previously reported cases, most of the DDD patients with STXBP1 pathogenic variants did not present with very early-onset or severe epilepsy and encephalopathy, though all have developmental delay with intellectual disability and most display behavioral problems and suffered seizures in later childhood. Conclusion: Variants across STXBP1 that cause loss of function can result in severe intellectual disability with or without seizures, consistent with a haploinsufficiency mechanism. Pathogenic missense mutations act through destabilization of the protein domain, making it prone to aggregation or degradation. The presence or absence of early seizures may reflect ascertainment bias in the literature as well as the broad recruitment strategy of the DDD study
A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL
Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPORT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water, The MODIS SST composites for initializing the SPORT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST data into the SPORT WRF runs is staggered such that SSTs are updated with a new composite every six hours in each of the WRF runs. From mid-February to July 2007, over 500 parallel WRF simulations have been collected for analysis and verification. This paper will present verification results comparing the NWS MIA operational WRF runs to the SPORT experimental runs, and highlight any substantial differences noted in the predicted mesoscale phenomena for specific cases
The rarity of terrestrial gamma-ray flashes
We report on the first search for Terrestrial Gamma-ray Flashes (TGFs) from altitudes where they are thought to be produced. The Airborne Detector for Energetic Lightning Emissions (ADELE), an array of gamma-ray detectors, was flown near the tops of Florida thunderstorms in August/September 2009. The plane passed within 10 km horizontal distance of 1213 lightning discharges and only once detected a TGF. If these discharges had produced TGFs of the same intensity as those seen from space, every one should have been seen by ADELE. Separate and significant nondetections are established for intracloud lightning, negative cloud-to-ground lightning, and narrow bipolar events. We conclude that TGFs are not a primary triggering mechanism for lightning. We estimate the TGF-to-flash ratio to be on the order of 10^(−2) to 10^(−3) and show that TGF intensities cannot follow the well-known power-law distribution seen in earthquakes and solar flares, due to our limits on the presence of faint events
Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain
We present a generic, multidisciplinary approach for improving our understanding of novel missense variants in recently discovered disease genes exhibiting genetic heterogeneity, by combining clinical and population genetics with protein structural analysis. Using six new de novo missense diagnoses in TBL1XR1 from the Deciphering Developmental Disorders study, together with population variation data, we show that the β-propeller structure of the ubiquitous WD40 domain provides a convincing way to discriminate between pathogenic and benign variation. Children with likely pathogenic mutations in this gene have severely delayed language development, often accompanied by intellectual disability, autism, dysmorphology and gastrointestinal problems. Amino acids affected by likely pathogenic missense mutations are either crucial for the stability of the fold, forming part of a highly conserved symmetrically repeating hydrogen-bonded tetrad, or located at the top face of the β-propeller, where ‘hotspot’ residues affect the binding of β-catenin to the TBLR1 protein. In contrast, those altered by population variation are significantly less likely to be spatially clustered towards the top face or to be at buried or highly conserved residues. This result is useful not only for interpreting benign and pathogenic missense variants in this gene, but also in other WD40 domains, many of which are associated with disease
Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness
Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness.Foundation Fighting Blindness CanadaCanadian Institutes of Health ResearchNIHCharles University institutional programmesBIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development FundMinistry of Health of the Czech RepublicGraduate School of Life Sciences (University of Wuerzburg)Government of Canada through Genome CanadaOntario Genomics InstituteGenome QuebecGenome British ColumbiaMcLaughlin CentreCharles Univ Prague, Inst Inherited Metab Disorders, Fac Med 1, Prague 12000 2, Czech RepublicMcGill Univ, Dept Human Genet, Fac Med, Montreal, PQ H3A 0G1, CanadaGenome Quebec Innovat Ctr, Montreal, PQ H3A 0G1, CanadaClin Res Inst Montreal, Cellular Neurobiol Res Unit, Montreal, PQ H2W 1R7, CanadaMcGill Univ, Montreal, PQ H3A 0G4, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, McGill Ocular Genet Lab, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Paediat Surg, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Human Genet, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Ophthalmol, Montreal, PQ H3H 1P3, CanadaUniv Alberta, Royal Alexandra Hosp, Dept Ophthalmol & Visual Sci, Edmonton, AB T5H 3V9, CanadaCharles Univ Prague, Inst Biol & Med Genet, Fac Med 1, Prague 12000 2, Czech RepublicBaylor Coll Med, Dept Mol & Human Genet, Human Genome Sequencing Ctr, Houston, TX 77030 USAUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilNewcastle Univ, Inst Med Genet, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, EnglandUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilSo Gen Hosp, Dept Clin Genet, Glasgow G51 4TF, Lanark, ScotlandCardiff Univ, Sch Med, Inst Med Genet, Cardiff CF14 4XN, S Glam, WalesHadassah Hebrew Univ Med Ctr, Dept Ophthalmol, IL-91120 Jerusalem, IsraelOregon Hlth & Sci Univ, Oregon Inst Occupat Hlth Sci, Portland, OR 97239 USAUniv Wurzburg, Lehrstuhl Neurobiol & Genet, D-97074 Wurzburg, GermanyUniv Montreal, Dept Med, Montreal, PQ H3T 1P1, CanadaMcGill Univ, Dept Anat & Cell Biol, Div Expt Med, Montreal, PQ H3A 2B2, CanadaUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilNIH: EY022356-01NIH: EY018571-05NIH: NS047663-09Charles University institutional programmes: PRVOUK-P24/LF1/3Charles University institutional programmes: UNCE 204011Charles University institutional programmes: SVV2013/266504BIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development Fund: CZ.1.05/1.1.00/02.0109Ministry of Health of the Czech Republic: NT13116-4/2012Ministry of Health of the Czech Republic: NT14015-3/2013Ontario Genomics Institute: OGI-049Web of Scienc
Evaluation of the National Hurricane Center’s Tropical Cyclone Wind Speed Probability Forecast Product
A tropical cyclone (TC) wind speed probability forecast product developed at the Cooperative Institute for Research in the Atmosphere (CIRA) and adopted by the National Hurricane Center (NHC) is evaluated for U.S. land-threatening and landfalling events over four hurricane seasons from 2004 to 2007. A key element of this work is the discernment of risk associated with the interval forecast probabilities for the three wind speed categories (i.e., 34, 50, and 64 kt, where 1 kt = 0.52 m s−1). A quantitative assessment of the interval probabilities (0–12, 12–24, 24–36, 36–48, 48–72, 72–96, and 96–120 h) is conducted by converting them into binary (yes–no) forecasts using decision thresholds that are selected using the true skill statistic (TSS) and the Heidke skill score (HSS). The NHC product performs well as both the HSS and TSS demonstrate skill out to the 48–72- and 72–120-h intervals, respectively. Overall, reliability diagrams and bias scores indicate that the NHC product has a tendency to overforecast event likelihood for cases where the forecast probabilities exceed 60%. Specifically, the NHC product tends to overforecast for the 34-kt category but underforecasts for the 64-kt category, especially at later forecast intervals. Results for the 50-kt category are mixed but also exhibit a tendency to underforecast during the latter intervals. Decision thresholds range from 1% to 55% depending on the selection method, wind speed category, and time interval. Given that the average forecast probabilities decrease with forecast hour, small forecast probabilities may be meaningful. The HSS is recommended over the TSS for decision threshold selection because the use of the TSS introduces significant bias and the HSS is less sensitive to filtering of correct negatives
The Rarity Of Terrestrial Gamma-ray Flashes
We report on the first search for Terrestrial Gamma-ray Flashes (TGFs) from altitudes where they are thought to be produced. The Airborne Detector for Energetic Lightning Emissions (ADELE), an array of gamma-ray detectors, was flown near the tops of Florida thunderstorms in August/September 2009. The plane passed within 10 km horizontal distance of 1213 lightning discharges and only once detected a TGF. If these discharges had produced TGFs of the same intensity as those seen from space, every one should have been seen by ADELE. Separate and significant nondetections are established for intracloud lightning, negative cloud-to-ground lightning, and narrow bipolar events. We conclude that TGFs are not a primary triggering mechanism for lightning. We estimate the TGF-to-flash ratio to be on the order of 10-2 to 10-3 and show that TGF intensities cannot follow the well-known power-law distribution seen in earthquakes and solar flares, due to our limits on the presence of faint events
- …
