10 research outputs found

    Thermochronology of allochthonous terranes in Ecuador : unravelling the accretionary and post-accretionary history of the Northern Andes

    No full text
    The western cordilleras of the Northern Andes (north of 5°S) are constructed from allochthonous terranes floored by oceanic crust. We present 40Ar/39Ar and fission-track data from the CordilleraOccidental and Amotape Complex of Ecuador that probably constrain the time of terrane collision and post-accretionary tectonism in the western Andes. The data record cooling rates of 80–2 °C/my from temperatures of ∌540 °C, during 85 to 60 Ma, in a highly tectonised mĂ©lange (PujilĂ­ unit) at the continent–ocean suture and in the northern Amotape Complex. The rates were highest during 85–80 Ma and decelerated towards 60 Ma. Cooling was a consequence of exhumation of the continental margin, which probably occurred in response to the accretion of the presently juxtaposing Pallatanga Terrane. The northern Amotape Complex and the PujilĂ­ unit may have formed part of a single, regional scale, tectonic mĂ©lange that started to develop at ~85 Ma, part of which currently comprises the basement of the Interandean Depression. Cooling and rotation in the allochthonous, continental, Amotape Complex and along parts of the continent–ocean suture during 43–29 Ma, record the second accretionary phase, during which the Macuchi Island Arc system collided with the Pallatanga Terrane. Distinct periods of regional scale cooling in the CordilleraOccidental at ∌13 and ∌9 Ma were synchronous with exhumation in the Cordillera Real and were probably driven by the collision of the Carnegie Ridge with the Ecuador Trench. Finally, late Miocene–Pliocene reactivation of the Chimbo–Toachi Shear Zone was coincident with the formation of the oldest basins in the Interandean Depression and probably formed part of a transcurrent or thrust system that was responsible for the inception and subsequent growth of the valley since ∌6 Ma

    High-resolution geochronology of the Coroccohuayco porphyry-skarn deposit, Peru: A rapid product of the Incaic orogeny

    No full text
    Precise and accurate determination of the timing and duration of ore-forming processes in porphyry systems is a fundamental step in understanding their genesis and placing them in a regional context. Here, we take advantage of the considerable improvements in the field of geochronology over the last decade to provide a robust geochronologic framework for hydrothermal and magmatic events in the Eocene Coroccohuayco porphyry-skarn Cu deposit, and the first robust dating of an ore system in the emerging Andahuaylas-Yauri batholith and metallogenic belt, southern Peru. This batholith and associated porphyry systems were emplaced during the Incaic orogeny, in a context of slab flattening, compression, exhumation, uplift, and the initiation of the bending of the Bolivian orocline. High-precision ages from early skarn (U-Pb, hydrothermal titanite) and later-stage mineralization (Re-Os, molybdenite) in the Coroccohuayco deposit are indistinguishable from each other and from available high-precision U-Pb zircon ages of the porphyries. All together, they indicate that the deposit was formed in less than 100 k.y. between 35.7 and 35.6 Ma. We also highlight a previously unrecognized pre-ore high-temperature hydrothermal event (U-Pb, hydrothermal titanite) that corresponds to the emplacement of a precursor gabbrodiorite complex at ca. 40.2 Ma. A new 40Ar/39Ar age at 26.6 Ma of a post-ore alkali basalt is interpreted as recording the initiation of slab roll-back following the flat slab episode and is therefore not related to the magmatic-hydrothermal system at Coroccohuayco. These data, together with structural measurements at the Coroccohuayco deposit and available regional data, suggest that the Coroccohuayco deposit was formed toward the end of Eocene arc magmatism, in a context of transpressional stress, intense erosion, and exhumation associated with Incaic orogeny. At the scale of the Tintaya ore district (which hosts the Coroccohuayco, Tintaya, and Antapaccay deposits), available data and a new molybdenite Re-Os age obtained for the Tintaya deposit suggest that mineralizing events were spatially focused and episodic over several millions of years, while a single economic deposit may have been formed within less than 100 k.y

    Tectonomagmatic evolution of Western Amazonia: Geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids

    No full text
    The results of a coupled, in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb study on zircon and geochemical characterization of the Eastern Cordilleran intrusives of Peru reveal 1.15 Ga of intermittent magmatism along central Western Amazonia, the Earth's oldest active open continental margin. The eastern Peruvian batholiths are volumetrically dominated by plutonism related to the assembly and breakup of Pangea during the Paleozoic-Mesozoic transition. A Carboniferous-Permian (340-285 Ma) continental arc is identified along the regional orogenic strike from the Ecuadorian border (6 degrees S) to the inferred inboard extension of the Arequipa-Antofalla terrane in southern Peru (14 degrees S). Widespread crustal extension and thinning, which affected western Gondwana throughout the Permian and Triassic resulted in the intrusion of the late- to post-tectonic La Merced-San Ramon-type anatectites dated between 275 and 220 Ma, while the emplacement of the southern Cordillera de Carabaya peraluminous granitoids in the Late Triassic to Early Jurassic (220-190 Ma) represents, temporally and regionally, a separate tectonomagmatic event likely related to resuturing of the Arequipa-Antofalla block. Volcano-plutonic complexes and stocks associated with the onset of the present Andean cycle define a compositionally bimodal alkaline suite and cluster between 180 and 170 Ma. A volumetrically minor intrusive pulse of Oligocene age (ca. 30 Ma) is detected near the southwestern Cordilleran border with the Altiplano. Both post-Gondwanide (30-170 Ma), and Precambrian plutonism (691-1123 Ma) are restricted to isolated occurrences spatially comprising less than 15% of the Eastern Cordillera intrusives. Only one remnant of a Late Ordovician intrusive belt is recognized in the Cuzco batholith (446.5 +/- 9.7 Ma) indicating that the Famatinian arc system previously identified in Peru along the north-central Eastern Cordillera and the coastal Arequipa-Antofalla terrane also existed inboard of this parautochthonous crustal fragment. Hitherto unknown occurrences of late Mesoproterozoic and middle Neoproterozoic granitoids from the south-central cordilleran segment define magmatic events at 691 +/- 13 Ma, 751 +/- 8 Ma, 985 +/- 14 Ma, and 1071-1123 +/- 23 Ma that are broadly coeval with the Braziliano and Grenville-Sunsas orogenies, respectively. Our data suggest the existence of a continuous orogenic belt in excess of 3500 km along Western Amazonia during the formation of Rodinia, its ``early'' fragmentation prior to 690 Ma, and support a model of reaccretion of the Paracas-Arequipa-Antofalla terrane to western Gondwana in the Early Ordovician with subsequent detachment of the Paracas segment in form of the Mexican Oaxaquia microcontinent in Middle Ordovician. A tectonomagmatic model involving slab detachment, followed by underplating of cratonic margin by asthenospheric mantle is proposed for the genesis of the volumetrically dominant Late Paleozoic to early Mesozoic Peruvian Cordilleran batholiths

    U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes

    No full text
    We investigated the Neoproterozoic–early Paleozoic evolution of the Gondwanan margin of the north-central Andes by employing U-Pb zircon geochronology in the Eastern Cordilleras of Peru and Ecuador using a combination of laser-ablation–inductively coupled plasma–mass spectrometry detrital zircon analysis and dating of syn- and post-tectonic intrusive rocks by thermal ionization mass spectrometry and ion microprobe. The majority of detrital zircon samples exhibits prominent peaks in the ranges 0.45–0.65 Ga and 0.9–1.3 Ga, with minimal older detritus from the Amazonian craton. These data imply that the Famatinian-Pampean and Grenville (= Sunsas) orogenies were available to supply detritus to the Paleozoic sequences of the north-central Andes, and these orogenic belts are interpreted to be either buried underneath the present-day Andean chain or adjacent foreland sediments. There is evidence of a subduction-related magmatic belt (474–442 Ma) in the Eastern Cordillera of Peru and regional orogenic events that pre- and postdate this phase of magmatism. These are confirmed by ion-microprobe dating of zircon overgrowths from amphibolite-facies schists, which reveals metamorphic events at ca. 478 and ca. 312 Ma and refutes the previously assumed Neoproterozoic age for orogeny in the Peruvian Eastern Cordillera. The presence of an Ordovician magmatic and metamorphic belt in the north-central Andes demonstrates that Famatinian metamorphism and subduction-related magmatism were continuous from Patagonia through northern Argentina to Venezuela. The evolution of this extremely long Ordovician active margin on western Gondwana is very similar to the Taconic orogenic cycle of the eastern margin of Laurentia, and our findings support models that show these two active margins facing each other during the Ordovician
    corecore