43 research outputs found

    kNACking on heaven’s door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds?

    Get PDF
    Senescence is a coordinated process where a plant, or a part of it, engages in programmed cell death to salvage nutrients by remobilizing them to younger tissues or to developing seeds. As Fe and Zn deficiency are the two major nutritional disorders in humans, increased concentration of these nutrients through biofortification in cereal grains is a long-sought goal. Recent evidences point to a link between the onset of leaf senescence and increased Fe and Zn remobilization. In wheat, one member of the NAC (NAM, ATAF, and CUC) transcription factor (TF) family (NAM-B1) has a major role in the process, probably regulating key genes for the early onset of senescence, which results in higher Fe and Zn concentrations in grains. In rice, the most important staple food for nearly half of the world population, the NAM-B1 ortholog does not have the same function. However, other NAC proteins are related to senescence, and could be playing roles on the same remobilization pathway. Thus, these genes are potential tools for biofortification strategies in rice. Here we review the current knowledge on the relationship between senescence, Fe and Zn remobilization and the role of NAC TFs, with special attention to rice. We also propose a working model for OsNAC5, which would act on the regulation of nicotianamine (NA) synthesis and metal–NA remobilization

    Reference gene selection for quantitative reverse transcription-polymerase chais reaction normalization during in vitro adventitious rooting in Eucaliptus globulus Labill

    Get PDF
    Background: Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. Results: By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs indentified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Conclusion: Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation

    Physicochemical and nutritional alterations induced by two-spotted spider mite infestation on strawberry plants

    Get PDF
    Background: Strawberry is a pseudofruit mainly cultivated in temperate climate regions. Considering its high levels of ascorbic acid and phenolic compounds, the consumption of strawberry fruit can be beneficial to health. The Brazilian strawberry production revolves around 3000 tons per year, significantly influencing the food market and generating income to farmers. However, this production can be partially impaired by two-spotted spider mite (TSSM) Tetranychus urticae Koch infestations, due to decreases in the quality and quantity of fruit. Since there are no data in the literature about alterations caused by TSSM infestation in strawberry plants, our work aimed towards evaluating nutritional and physicochemical parameters of TSSM-infested strawberry plants, along with the related chemical treatment (CT) (acaricide) or biological treatment (predatory mite Phytoseiulus macropilis Banks). Results: Strawberry fruit from TSSM-infested plants present the highest levels of acidity and exhibit low levels of anthocyanin and phenolic compounds, while fruit from TSSM-infested plants + biological control using predatory mite shows high levels of soluble solids, phenolic compounds and ascorbic acid, along with a high soluble solid content/titratable (SSC/TA) acidity ratio, which indicates high quality fruit. Conclusions: Our results suggest that TSSM infestation decreases fruit quality and that the biological control of TSSM using a predatory mite is a suitable alternative to organic production, since the presence of predatory mite does not affect fruit quality and development

    The combined strategy for iron uptake is not exclusive to domesticated rice

    Get PDF
    Iron (Fe) is an essential micronutrient that is frequently inaccessible to plants. Rice (Oryza sativa L.) plants employ the Combined Strategy for Fe uptake, which is composed by all features of Strategy II, common to all Poaceae species, and some features of Strategy I, common to non-Poaceae species. To understand the evolution of Fe uptake mechanisms, we analyzed the root transcriptomic response to Fe defciency in O. sativa and its wild progenitor O. rufpogon. We identifed 622 and 2,017 diferentially expressed genes in O. sativa and O. rufpogon, respectively. Among the genes up-regulated in both species, we found Fe transporters associated with Strategy I, such as IRT1, IRT2 and NRAMP1; and genes associated with Strategy II, such as YSL15 and IRO2. In order to evaluate the conservation of these Strategies among other Poaceae, we identifed the orthologs of these genes in nine species from the Oryza genus, maize and sorghum, and evaluated their expression profle in response to low Fe condition. Our results indicate that the Combined Strategy is not specifc to O. sativa as previously proposed, but also present in species of the Oryza genus closely related to domesticated rice, and originated around the same time the AA genome lineage within Oryza diversifed. Therefore, adaptation to Fe2+ acquisition via IRT1 in fooded soils precedes O. sativa domestication

    Stabilization study of tetrameric kluyveromyces lactis β-galactosidase by immobilization on immobead: thermal, physico-chemical, textural and catalytic properties

    Get PDF
    We investigated the immobilization of a tetrameric Kluyveromyces lactis β-galactosidase (EC: 3.2.1.23) (KL-Gal) on Immobead 150 using different support modification strategies. Immobead support was modified using an acid solution of H2SO4:HNO3 (3:1) (Immobead-Ac) or 5 % (v/v) glutaraldehyde (Immobead-Glu). Its unmodified form (Immobead) was also tested. Immobilization yields and efficiencies were evaluated by testing protein loads from 10 to 200 mg.g-1 support. The thermal, physico-chemical, textural and catalytic properties of the supports (modified and unmodified) and their derivatives (Immobead-KL-Gal, Immobead-Ac-KL-Gal and Immobead-Glu-KL-Gal) were analyzed. The highest immobilization yields and efficiencies were achieved with a protein load of 100 mg.g-1 support. Surface and pore areas of the Immobead support were greatly decreased after modification. Michaelis constant of the immobilized β-galactosidase increased in the derivatives. Maximum velocity decreased approximately 2.8 times for Immobead-KL-Gal and Immobead-Glu-KL-Gal, and approximately 1.4 times for Immobead-Ac-KL-Gal. In batch processes, the three derivatives could be reused successfully at least 15 times, maintaining high residual enzymatic activity during the lactose hydrolysis (in both cheese whey and milk). The tetrameric K. lactis β-galactosidase immobilized on Immobead supports via the tested treatments was stabilized and is an alternative tool for lactose hydrolysis in the dairy industry

    Papel da ferritina na tolerância de arroz ao excesso de ferro

    Get PDF
    Deficiência de ferro (Fe) ocorre freqüentemente em plantas, uma vez que este mineral é pouco disponível em condições aeróbicas. Plantas de arroz cultivadas sob alagamento, no entanto, estão sujeitas ao excesso de Fe, que pode ser extremamente tóxico. Alguns cultivares de arroz são resistentes a altas concentrações de ferro, mas os mecanismos fisiológicos responsáveis por essa resistência são pouco conhecidos. A ferritina é uma proteína de ampla distribuição e capaz de armazenar ferro, sendo considerada importante para a homeostase deste metal. Acúmulo de ferritina em condições de alta disponibilidade de ferro já foi descrito em algumas espécies vegetais. Entretanto, o papel da ferritina no mecanismo de tolerância de plantas de arroz ao excesso de ferro não é conhecido. Neste trabalho, expressamos ferritina de arroz em E. coli, produzimos um anticorpo policlonal anti-ferritina de arroz e este foi utilizado para avaliar o acúmulo de ferritina em dois cultivares de arroz (Oryza sativa) considerados suscetível (BR-IRGA 409) e tolerante (EPAGRI 108) ao excesso de ferro. O anticorpo foi capaz de reconhecer ferritina purificada de sementes de ervilha, assim como ferritina de folhas de arroz. Aumentos nos níveis de mRNA e proteína foram observados nos dois cultivares sob excesso de ferro, com maior acúmulo da proteína no cultivar EPAGRI 108. Quando submetidas a excesso do elemento, plantas deste mesmo cultivar atingiram concentrações de Fe mais baixas do que plantas do cultivar BR-IRGA409, principalmente nas partes aéreas. Sugere-se que o mecanismo de tolerância ao excesso de ferro no cultivar EPAGRI 108 inclui limitação da translocação de Fe e aumento do acúmulo de ferritina. Este é o primeiro trabalho que mostra maior acúmulo da proteína ferritina em um cultivar de Oryza sativa tolerante ao excesso de Fe, fornecendo evidência de um possível papel desta proteína nos mecanismos de tolerância a este metal.Plants ordinarily face iron (Fe) deficiency, since this mineral is poorly available in soils under aerobic conditions. Nonetheless, wetland and irrigated rice plants can be exposed to excess, highly toxic Fe. Ferritin is a ubiquitous Fe-storage protein, important for iron homeostasis. Increased ferritin accumulation resulting from higher Fe availability was shown in some plant species. However, the role of ferritin in tolerance mechanisms to Fe overload in rice is yet to be established. In this study, recombinant rice ferritin was expressed in Escherichia coli, producing an anti-rice ferritin polyclonal antibody which was used to evaluate ferritin accumulation in two rice (Oryza sativa L.) cultivars, either susceptible (BR-IRGA 409) or tolerant (EPAGRI 108) to Fe toxicity. Increased ferritin mRNA and protein levels resulting from excess Fe treatment were detected in both cultivars, with higher ferritin protein accumulation in EPAGRI 108 plants, which also reached lower shoot Fe concentrations when submitted to iron overload. The tolerance mechanism to excess Fe in EPAGRI 108 seems to include both restricted Fe translocation and increased ferritin accumulation. This is the first work that shows higher accumulation of the ferritin protein in an iron-excess tolerant Oryza sativa cultivar, providing evidence of a possible role of this protein in iron tolerance mechanisms

    Oryza sativa cv. Nipponbare and Oryza barthii as unexpected tolerance and susceptibility sources against Schizotetranychus oryzae (Acari: Tetranychidae) mite infestation

    Get PDF
    Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to analyze the response of two African rice species (Oryza barthii and Oryza glaberrima), weedy rice (O. sativa f. spontanea), and O. sativa cv. Nipponbare to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, and chlorophyll concentration/fluorescence indicated that the African species present a higher level of leaf damage, increased accumulation of H2O2, and lower photosynthetic capacity when compared to O. sativa plants under infested conditions. Infestation decreased tiller number, except in Nipponbare, and caused the death of O. barthii and O. glaberrima plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa, the number of panicles per plant was affected only in O. sativa f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) plants under control and infested conditions. O. barthii presents a less abundant antioxidant arsenal and is unable to modulate proteins involved in general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes, and energy production, suggesting that the primary metabolism is maintained more active compared to O. barthii under infested condition. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors (PIs). These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming at increased tolerance to mite infestation

    Memorial de infantería: Época 2 Número 9 - marzo 1873

    Get PDF
    Rice is the staple food for over half of the world’s population. Infestation of Schizotetranychus oryzae (Acari: Tetranychidae) causes great losses in rice productivity. To search for rice genotypes that could better tolerate S. oryzae infestation, we evaluated morphological and production parameters in Brazilian cultivars, and identified two cultivars with contrasting responses. Leaf damage during infestation was similar for all cultivars. However, infestation in Puitá INTA-CL resulted in reduction in the number of seeds per plant, percentage of full seeds, weight of 1,000 seeds, and seed length, whereas infestation in IRGA 423 increased weight of 1,000 seeds and seed length. Reduction in seed weight per plant caused by infestation was clearly higher in Puitá INTA-CL (62%) compared to IRGA 423 (no reduction detected), thus Puitá INTA-CL was established as susceptible, and IRGA 423 as tolerant to S. oryzae infestation. Photosynthetic parameters were less affected by infestation in IRGA 423 than in Puitá INTA-CL, evidencing higher efficiency of energy absorption and use. S. oryzae infestation also caused accumulation of H2O2, decreased cell membrane integrity (indicative of cell death), and accelerated senescence in leaves of Puitá INTA-CL, while leaves of IRGA 423 presented higher levels of total phenolics compounds. We performed proteomics analysis of Puitá INTA-CL and IRGA 423 leaves after 7 days of infestation, and identified 60 differentially abundant proteins (28 more abundant in leaves of Puitá INTA-CL and 32 in IRGA 423). Proteins related to plant defense, such as jasmonate synthesis, and related to other mechanisms of tolerance such as oxidative stress, photosynthesis, and DNA structure maintenance, together with energy production and general metabolic processes, were more abundant in IRGA 423. We also detected higher levels of silicon (as amorphous silica cells) in leaves of infested IRGA 423 plants compared to Puitá INTA-CL, an element previously linked to plant defense, indicating that it could be involved in tolerance mechanisms. Taken together, our data show that IRGA 423 presents tolerance to S. oryzae infestation, and that multiple mechanisms might be employed by this cultivar. These findings could be used in biotechnological approaches aiming to increase rice tolerance to mite infestation
    corecore