46 research outputs found

    Human Immunodeficiency Virus type 1 Endocytic Trafficking Through Macrophage Bridging Conduits Facilitates Spread of Infection

    Get PDF
    Bridging conduits (BC) sustain communication and homeostasis between distant tethered cells. These are also exploited commonly for direct cell-to-cell transfer of microbial agents. Conduits efficiently spread infection, effectively, at speeds faster than fluid phase exchange while shielding the microbe against otherwise effective humoral immunity. Our laboratory has sought to uncover the mechanism(s) for these events for human immunodeficiency virus type one (HIV-1) infection. Indeed, in our prior works HIV-1 Env and Gag antigen and fluorescent virus tracking were shown sequestered into endoplasmic reticulum-Golgi organelles but the outcomes for spreading viral infection remained poorly defined. Herein, we show that HIV-1 specifically traffics through endocytic compartments contained within BC and directing such macrophage-to-macrophage viral transfers. Following clathrin-dependent viral entry, HIV-1 constituents bypass degradation by differential sorting from early to Rab11+ recycling endosomes and multivesicular bodies. Virus-containing endocytic viral cargoes propelled by myosin II through BC spread to neighboring uninfected cells. Disruption of endosomal motility with cytochalasin D, nocodasole and blebbistatin diminish intercellular viral spread. These data lead us to propose that HIV-1 hijacks macrophage endocytic and cytoskeletal machineries for high-speed cell-to-cell spread

    Heterologous Replacement of the Supposed Host Determining Region of Avihepadnaviruses: High In Vivo Infectivity Despite Low Infectivity for Hepatocytes

    Get PDF
    Hepadnaviruses, including hepatitis B virus (HBV), a highly relevant human pathogen, are small enveloped DNA viruses that replicate via reverse transcription. All hepadnaviruses display a narrow tissue and host tropism. For HBV, this restricts efficient experimental in vivo infection to chimpanzees. While the cellular factors mediating infection are largely unknown, the large viral envelope protein (L) plays a pivotal role for infectivity. Furthermore, certain segments of the PreS domain of L from duck HBV (DHBV) enhanced infectivity for cultured duck hepatocytes of pseudotyped heron HBV (HHBV), a virus unable to infect ducks in vivo. This implied a crucial role for the PreS sequence from amino acid 22 to 90 in the duck tropism of DHBV. Reasoning that reciprocal replacements would reduce infectivity for ducks, we generated spreading-competent chimeric DHBVs with L proteins in which segments 22–90 (Du-He4) or its subsegments 22–37 and 37–90 (Du-He2, Du-He3) are derived from HHBV. Infectivity for duck hepatocytes of Du-He4 and Du-He3, though not Du-He2, was indeed clearly reduced compared to wild-type DHBV. Surprisingly, however, in ducks even Du-He4 caused high-titered, persistent, horizontally and vertically transmissable infections, with kinetics of viral spread similar to those of DHBV when inoculated at doses of 108 viral genome equivalents (vge) per animal. Low-dose infections down to 300 vge per duck did not reveal a significant reduction in specific infectivity of the chimera. Hence, sequence alterations in PreS that limited infectivity in vitro did not do so in vivo. These data reveal a much more complex correlation between PreS sequence and host specificity than might have been anticipated; more generally, they question the value of cultured hepatocytes for reliably predicting in vivo infectivity of avian and, by inference, mammalian hepadnaviruses, with potential implications for the risk assessment of vaccine and drug resistant HBV variants

    A Family of Plasmodesmal Proteins with Receptor-Like Properties for Plant Viral Movement Proteins

    Get PDF
    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement

    Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.

    Get PDF
    Abstract BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)
    corecore