43,153 research outputs found

    Phase space solutions in scalar-tensor cosmological models

    Full text link
    An analysis of the solutions for the field equations of generalized scalar-tensor theories of gravitation is performed through the study of the geometry of the phase space and the stability of the solutions, with special interest in the Brans-Dicke model. Particularly, we believe to be possible to find suitable forms of the Brans-Dicke parameter omega and potential V of the scalar field, using the dynamical systems approach, in such a way that they can be fitted in the present observed scenario of the Universe.Comment: revtex, 2 pages, 4 eps figures, to appear in Brazilian Journal of Physics (proceedings of the Conference 100 Years of Relativity, Sao Paulo, Brazil, August 2005

    Bare LO-Phonon Peak in THz-Emission Signals: a Dielectric-Function Analysis

    Full text link
    We present a normal-mode analysis of coupled photocarrier-phonon dynamics in Te. We consider a dielectric function which accounts for LO phonons and the electron-hole gas within the Debye-Huckel model and RPA. Our main finding is the existence of a bare LO phonon mode in the system even at high carrier density. This oscillation is an unscreened L- mode arising from ineffective screening at large wave vectors. This mode is consistent with the bare LO-phonon peak in recent THz-emission spectra of Te.Comment: 3 pages, 1 figure, Special Issue: Proceedings of the 10th Brazilian Workshop on Semiconductor Physics, Guaruja/SP, April/200

    Parametric Competition in non-autonomous Hamiltonian Systems

    Full text link
    In this work we use the formalism of chord functions (\emph{i.e.} characteristic functions) to analytically solve quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann entropy, where the latter is the physical quantity of interest. We study in details two examples that are known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an oscillator with time dependent frequency. We show that it will appear in both cases a clear competition between instability and dissipation. If the dissipation is small when compared to the instability, the squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained, thence the growth in the von Neumann entropy is contained

    Robustness of quantum discord to sudden death

    Get PDF
    We calculate the dissipative dynamics of two-qubit quantum discord under Markovian environments. We analyze various dissipative channels such as dephasing, depolarizing, and generalized amplitude damping, assuming independent perturbation, in which each qubit is coupled to its own channel. Choosing initial conditions that manifest the so-called sudden death of entanglement, we compare the dynamics of entanglement with that of quantum discord. We show that in all cases where entanglement suddenly disappears, quantum discord vanishes only in the asymptotic limit, behaving similarly to individual decoherence of the qubits, even at finite temperatures. Hence, quantum discord is more robust than the entanglement against to decoherence so that quantum algorithms based only on quantum discord correlations may be more robust than those based on entanglement.Comment: 4 figures, 4 page
    corecore