
Robustness of quantum discord to sudden death

T. Werlang,1 S. Souza,1 F. F. Fanchini,2 and C. J. Villas Boas1,3

1Departamento de Física, Universidade Federal de São Carlos, P.O. Box 676, CEP 13565-905 São Carlos, SP, Brazil
2Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, P.O. Box 6165, CEP 13083-970 Campinas, SP, Brazil

3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
�Received 17 June 2009; published 31 August 2009�

We calculate the dissipative dynamics of two-qubit quantum discord under Markovian environments. We
analyze various dissipative channels such as dephasing, depolarizing, and generalized amplitude damping,
assuming independent perturbation, in which each qubit is coupled to its own channel. Choosing initial
conditions that manifest the so-called sudden death of entanglement, we compare the dynamics of entangle-
ment with that of quantum discord. We show that in all cases where entanglement suddenly disappears,
quantum discord vanishes only in the asymptotic limit, behaving similarly to individual decoherence of the
qubits, even at finite temperatures. Hence, quantum discord is more robust than the entanglement against
decoherence so that quantum algorithms based only on quantum discord correlations may be more robust than
those based on entanglement.
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Entanglement is widely seen as the main reason for the
computational advantage of quantum over classical algo-
rithms. This view is backed up by the discovery that, in order
to offer any speedup over a classical computer, the universal
pure-state quantum computer would have to generate a large
amount of entanglement �1�. However, quantum entangle-
ment is not necessary for deterministic quantum computation
with one pure qubit �DQC1�, introduced by Knill and
Laflamme �2�. As seen in �3,4�, although there is no en-
tanglement, other kinds of nonclassical correlation are re-
sponsible for the quantum computational efficiency of
DQC1. Such correlations are characterized as quantum dis-
cord �5�, which accounts for all nonclassical correlations
present in a system, being the entanglement a particular case
of it. Besides its application in DQC1, quantum discord has
also been used in studies of quantum phase transition �6�,
estimation of quantum correlations in the Grover search al-
gorithm �7�, and to define the class of initial system-bath
states for which the quantum dynamics is equivalent to a
completely positive map �8�.

When considering a pair of entangled qubits exposed to
local noisy environments, disentanglement can occur in a
finite time �9–13� differently from the usual local decoher-
ence in asymptotic time. The occurrence of this phenom-
enon, named “entanglement sudden death” �ESD�, depends
on the system-environment interaction and on the initial state
of the two qubits. Our goal was to investigate the dynamics
of quantum discord of two qubits under the same conditions
in which ESD can occur. We show in this Brief Report that
even in cases where entanglement suddenly disappears,
quantum discord decays only in asymptotic time. Further-
more, this occurs even at finite temperatures. In this sense,
quantum discord is more robust against decoherence than
entanglement, implying that quantum algorithms based only
on quantum discord correlations are more robust than those
based on entanglement.

There are various methods to quantify the entanglement
between two qubits �14–16� and, even when they give dif-
ferent results for the degree of entanglement of a specific
state, all of them result in zero for separable states. There-

fore, under dissipative dynamics where an initial entangled
state can disappear suddenly, all of them necessarily agree
about the time when the quantum state becomes separable.

Here, to investigate the two-qubit entanglement dynamics
we use concurrence as the quantifier �15�. The concurrence is
given by max�0,��t��, where ��t�=�1−�2−�3−�4 and �1
��2��3��4 are the square roots of the eigenvalues of the
matrix ��t��2 � �2���t��2 � �2, ���t� being the complex con-
jugate of ��t� and �2 being the second Pauli matrix. The
density matrix we use to evaluate concurrence has an X
structure �12�, defined by �12=�13=�24=�34=0, which are
constant during the evolution, for the various dissipative
channels used here. In this case, the concurrence has a simple
analytic expression C�t�=2 max�0,�1�t� ,�2�t��, where
�1�t�= ��14�−��22�33 and �2�t�= ��23�−��11�44. However, as
pointed out above, entanglement is not the only kind of
quantum correlation. In quantum information theory, the Von
Neumann entropy, S���=−Tr�� log2 ��, is used to quantify
the information in a generic quantum state �. The total cor-
relation between two subsystems A and B of a bipartite
quantum system �AB is given by the mutual information,

I��AB� = S��A� + S��B� − S��AB� , �1�

where S��AB�=−Tr��AB log2 �AB� is the joint entropy of the
system �17�. This bipartite quantum state �AB is a hybrid
object with both classical and quantum characteristics and, in
order to reveal the classical aspect of correlation, Henderson
and Vedral suggested that correlation could also be split into
two parts, the quantum and the classical �18�. The classical
part was defined as the maximum information about one sub-
system that can be obtained by performing a measurement on
the other subsystem. If we choose a complete set of projec-
tors ��k� to measure one of the subsystems, say B, the infor-
mation obtained about A after the measurement resulting in
outcome k with probability pk is the difference between the
initial and the conditional entropies �18�,
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QA��AB� = max
��k� 	S��A� − 


k

pkS��A�k�� , �2�

where �A�k=TrB��k�AB�k� /TrAB��k�AB�k� is the reduced
state of A after obtaining the outcome k in B. This measure-
ment of classical correlation assumes equal values, irrespec-
tive of whether the measurement is performed on the sub-
system A or B for all states �AB such that S��A�=S��B� �18�.
This condition is true of all density operators used in this
Brief Report since they can be written as �= 1

4 �I+c0��3 � I
+ I � �3�+
 j cj� j � � j�, where ci and �i �i=1,2 ,3� are real
constants and Pauli matrices, respectively. Therefore �A
=�B.

In this scenario, a quantity that provides information on
the quantum component of the correlation between two sys-
tems can be introduced as the difference between the total
correlations in Eq. �1� and the classical correlation in Eq. �2�.
This quantity is identical to the definition of quantum discord
introduced by Ollivier and Zurek in �5�, namely,

D��AB� = I��AB� − Q��AB� , �3�

this being zero for states with only classical correlations
�5,18� and nonzero for states with quantum correlations.
Moreover, quantum discord includes quantum correlations
that can be present in states that are not entangled �5�, re-
vealing that all the entanglement measurements such as con-
currence, entanglement of formation, etc., do not capture the
whole of quantum correlation between two mixed separate
systems. For pure states, the discord reduces exactly to a
measure of entanglement, namely, the entropy of entangle-
ment.

In order to calculate the quantum discord between two
qubits subject to dissipative processes, we use the following
approach. The dynamics of two qubits interacting indepen-
dently with individual environments is described by the so-
lutions of the appropriate Born-Markov-Lindblad equations
�19�, which can be obtained conveniently by the Kraus op-
erator approach �17�. Given an initial state for two qubits
��0�, its evolution can be written compactly as

��t� = ��,	E�,	��0�E�,	
† , �4�

where the so-called Kraus operators E�,	=E� � E	 �17� sat-
isfy ��,	E�,	

† E�,	= I for all t. The operators E��� describe the
one-qubit quantum channel effects.

In the cases where the quantum channel induces a disen-
tanglement only in asymptotic time, the quantum discord
does not disappear in a finite time since the entanglement is
itself a kind of quantum correlation. Therefore, we present
below what happens to the discord in the ESD situations for
some of the common channels for qubits: dephasing, gener-
alized amplitude damping �GAD� �thermal bath at arbitrary
temperature�, and depolarizing.

Dephasing. The dephasing channel induces a loss of
quantum coherence without any energy exchange �17�. The
quantum state populations remain unchanged throughout the
time. To examine the two-qubit entanglement and discord
dynamics under the action of a dephasing channel, we utilize
the Werner state as the initial condition, i.e., ��0�= �1−
�I /
4+
��−��−�, 
� �0,1�, and ��−�= ��01�− �10�� /�2. In this

case, we can calculate analytically the quantum discord in a
situation where the entanglement suddenly disappears. Thus,
according to Eq. �4�, with the nonzero Kraus operators for a
dephasing channel given by E0=diag�1,�1−�� and E1
=diag�1,���, where �=1−e−t,  denoting the decay rate
�17�, the elements of the density matrix of this system evolve
to

�ii�t� = �ii�0�, i = 1, . . . ,4,

�23�t� = �23�0��1 − �� = �32�t� .

The concurrence for this state is given by C���=
�3 /2
−2��−1 /2, which reaches zero in a finite time for any 

�1, as shown in Fig. 1�a�. On the other hand, based on the
results given in �20�, the quantum discord for this state reads
D���= �F�a+b�+F�a−b�� /4−F�a� /2, where F�x�=x log2 x,
a= �1−
�, and b=2
�1−��. As shown in Fig. 1�b�, for any

, the quantum discord vanishes �D���=0� only in the
asymptotic limit.

Generalized amplitude damping. The GAD describes the
exchange of energy between the system and the environ-
ment, including finite temperature aspects. It is described by
the Kraus operators E0=�q diag�1,�1−��, E1=�q���1
+ i�2� /2, E2=��1−q�� diag��1−� ,1�, and E3=��1−q����1
− i�2� /2, where � is defined above and q defines the final
probability distribution of the qubit when t→� �q=1 corre-
sponds to the usual amplitude damping with T=0K� �17�.

For the initial condition given by ��0�= ����� with

��� = �1 − 
�00� + �
�11�, 
 � �0,1� , �5�

we obtain, according to Eq. �4�, the density matrix dynamics,

�11�t� = �11�0��1 − ��2�1 − q� − ��1 − 2q��� + �2q2,

�22�t� = �33�t� = ���11�0��1 − 2q��1 − �� + q�1 − �q�� ,

�44�t� = 1 − �11�t� − 2�22�t� ,

�14�t� = �41�t� = �14�0��1 − �� .

We examine the dissipative dynamics derived from this
channel, taking q=1 and q=2 /3. For these cases, we com-
pute the discord numerically and compare it with the concur-
rence. To calculate the discord, we chose the set of projectors
���1��1� , ��2��2��, where ��1�=cos ��0�+ei� sin ��1� and

FIG. 1. Dissipative dynamics of �a� concurrence and �b� discord
as functions of 
 and �, assuming independent dephasing perturba-
tive channels.
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��2�=−cos ��1�+e−i� sin ��0�, to measure one of the sub-
systems. The maximum of Eq. �2� is obtained numerically by
varying the angles � and � from 0 to 2�.

For q=1, we have C�t�=max�0,�1�t��, with �1�t��0 for
all t, whenever 
�1 /2 �see Fig. 2�a��. On the other hand,
for q�1, we have �1�t→���0 for all 
, as shown in Fig.
2�c�. In this case, since the concurrence decays monotoni-
cally under the Markovian approximation �21�, the ESD oc-
curs for any initial superposition state, i.e., for any 
 differ-
ent from 0 or 1.

The discord evidently behaves differently from the con-
currence �see Figs. 2�b� and 2�d��. In both situations �q=1
and q=2 /3�, the discord decays exponentially and vanishes
only asymptotically. For 
=1 or 
=0 �pure separable states�
the quantum discord is zero all the time, as expected.

Depolarizing. The depolarizing channel represents the
process in which the density matrix is dynamically replaced
by the maximal mixed state I /2, I being the identity matrix
of a single qubit. The set of Kraus operators that reproduces
the effect of the depolarizing channel is given by E0
=�1−3� /4I, E1=�� /4�1, E2=�� /4�2, and E3=�� /4�3,
with � defined above �17�. Assuming the initial condition
given by Eq. �5�, we obtain the density matrix element dy-
namics,

�11�t� = �11�0��1 − �� + �2/4,

�22�t� = �33�t� = �/2�1 − �/2� ,

�44�t� = 1 − �11�t� − 2�22�t� ,

�14�t� = �41�t� = �14�0��1 − �� .

As in generalized amplitude damping, the ESD occurs for
any initial condition since C�t�=max�0,�1�t�� and �1�t
→���0 �Fig. 3�a��. Again, as shown in Fig. 3�b�, the quan-
tum discord does not disappear in a finite time. Here we used

the same procedure as above to calculate the discord numeri-
cally.

Dephasing plus amplitude damping. In Fig. 4 we plot the
concurrence and quantum discord for the case where both
qubits interact individually with two distinct reservoirs: those
which induce dephasing and amplitude damping. We assume
equal decay rates �� for both channels, q=1 �T=0K� and
�=1−e−t. For the initial condition given by Eq. �5�, the
dephasing channel alone is not able to induce sudden death
of entanglement. On the other hand, in the presence of an
amplitude damping channel, the entanglement suddenly dis-
appears for some values of 
 �Fig. 2�a��, as discussed above.
However, when both channels are present, the dynamics of
the entanglement is very different, suddenly disappearing for
all values of 
 as we can see in Fig. 4�a�. This nonadditivity
of the decoherence channels in the entanglement dynamics
was first pointed out by Yu and Eberly �11�, in contrast to the
additivity of the decay rates of different decoherence chan-
nels of a single system �11�. But, as shown in Fig. 4�b�, the
discord still decays asymptotically when both decoherence
channels are present, as shown in Fig. 4�b�, indicating that
the additivity of the decoherence channels is valid for the
quantum discord.

In conclusion, we have calculated the discord dynamics
for two qubits coupled to independent Markovian environ-
ments. We observed that under the dissipative dynamics con-
sidered here, discord is more robust than entanglement, even
at a finite temperature, being immune to a “sudden death.”
This also points to a fact that the absence of entanglement
does not necessarily indicate the absence of quantum corre-
lations. Thus, quantum discord might be a better measure of

FIG. 2. Dissipative dynamics of �a� and �c� concurrence and �b�
and �d� discord as functions of 
 and �, assuming independent
generalized amplitude damping. �a� and �b� q=1 and �c� and �d� q
=2 /3.

FIG. 3. Dissipative dynamics of �a� concurrence and �b� discord
as functions of 
 and �, assuming independent depolarizing chan-
nels.

FIG. 4. Dissipative dynamics of �a� concurrence and �b� discord
as functions of 
 and �, assuming simultaneous action of dephasing
and generalized amplitude damping channels in each qubit with
q=1.
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the quantum resources available to quantum information and
computation processes. This also suggests that quantum
computers based on this kind of quantum correlation, differ-
ently from those based on entanglement, are more resistant
to external perturbations and, therefore, introduce a new
hope of implementing an efficient quantum computer. More-
over, discord may be considered, in this scenario, as a good
indicator of classicality �5,22�, since it vanishes only in the
asymptotic limit, when the coherence of the individual qubits
disappears. However, we have not demonstrated that the sud-

den death of discord in a Markovian regime is impossible,
and a study of the discord from a geometrical point of view
�23�, for example, might be useful to address this important
question.
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