733 research outputs found

    Conflict-specific mechanisms of cognitive control and their neural implementation

    Get PDF

    Causal role of lateral prefrontal cortex in mental effort and fatigue

    Get PDF
    Dorsolateral prefrontal cortex (DLPFC) is well‐known for its role in exerting mental work, however the contribution of DLPFC for deciding whether or not to engage in effort remains unknown. Here, we assessed the causal role of DLPFC in effort‐based decision making. We disrupted functioning of DLPFC with noninvasive brain stimulation before participants repeatedly decided whether to exert mental effort in a working memory task. We found the same DLPFC subregion involved in mental effort exertion to influence also effort‐based decisions: First, it enhanced effort discounting, suggesting that DLPFC may signal the capacity to successfully deal with effort demands. Second, a novel computational model integrating the costs of enduring effort into the effort‐based decision process revealed that DLPFC disruption reduced fatigue after accumulated effort exertion, linking DLPFC activation with fatigue. Together, our findings indicate that in effort‐based decisions DLPFC represents the capacity to exert mental effort and the updating of this information with enduring time‐on‐task, informing theoretical accounts on the role of DLPFC in the motivation to exert mental effort and the fatigue arising from it

    Brain stimulation over dorsomedial prefrontal cortex modulates effort-based decision making

    Get PDF
    Deciding whether to engage in strenuous mental activities requires trading-off the potential benefits against the costs of mental effort, but it is unknown which brain rhythms are causally involved in such cost-benefit calculations. We show that brain stimulation targeting midfrontal theta oscillations increases the engagement in goal-directed mental effort. Participants received transcranial alternating current stimulation over dorsomedial prefrontal cortex while deciding whether they are willing to perform a demanding working memory task for monetary rewards. Midfrontal theta tACS increased the willingness to exert mental effort for rewards while leaving working memory performance unchanged. Computational modelling using a hierarchical Bayesian drift diffusion model suggests that theta tACS shifts the starting bias before evidence accumulation towards high reward-high effort options without affecting the velocity of the evidence accumulation process. Our findings suggest that the motivation to engage in goal-directed mental effort can be increased via midfrontal tACS

    Toward a unifying account of dopamine’s role in cost-benefit decision making

    Get PDF
    Dopamine is thought to play a crucial role in cost-benefit decision making, but so far there is no consensus on the precise role of dopamine in decision making. Here, we review the literature on dopaminergic manipulations of cost-benefit decision making in humans and evaluate how well different theoretical accounts explain the existing body of evidence. Reduced D2 stimulation tends to increase the willingness to bear delay and risk costs (i.e., wait for later rewards, take riskier options), while increased D1 and D2 receptor stimulation increases willingness to bear effort costs. We argue that the empirical findings can best be explained by combining the strengths of two theoretical accounts: in cost-benefit decision making, dopamine may play a dual role both in promoting the pursuit of psychologically close options (e.g., sooner and safer rewards) and in computing which costs are acceptable for a reward at stake. Moreover, we identify several limiting factors in the study designs of previous investigations that prevented a fuller understanding of dopamine’s role in value-based choice. Together, the proposed theoretical framework and the methodological suggestions for future studies may bring us closer to a unifying account of dopamine in healthy and impaired cost-benefit decision making

    Fungal Traits Important for Soil Aggregation

    Get PDF
    Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of soils and soil biota. Among them, filamentous saprobic fungi have well-documented effects on soil aggregation. However, it is unclear what properties, or traits, determine the overall positive effect of fungi on soil aggregation. To achieve progress, it would be helpful to systematically investigate a broad suite of fungal species for their trait expression and the relation of these traits to soil aggregation. Here, we apply a trait-based approach to a set of 15 traits measured under standardized conditions on 31 fungal strains including Ascomycota, Basidiomycota, and Mucoromycota, all isolated from the same soil. We find large differences among these fungi in their ability to aggregate soil, including neutral to positive effects, and we document large differences in trait expression among strains. We identify biomass density, i.e., the density with which a mycelium grows (positive effects), leucine aminopeptidase activity (negative effects) and phylogeny as important factors explaining differences in soil aggregate formation (SAF) among fungal strains; importantly, growth rate was not among the important traits. Our results point to a typical suite of traits characterizing fungi that are good soil aggregators, and our findings illustrate the power of employing a trait-based approach to unravel biological mechanisms underpinning soil aggregation. Such an approach could now be extended also to other soil biota groups. In an applied context of restoration and agriculture, such trait information can inform management, for example to prioritize practices that favor the expression of more desirable fungal traits

    A Context-Aware and Preference-Driven Vacation Planner for Tourism Regions

    Get PDF
    Taking a Preference SQL approach, a context-aware vacation planner for on-site activities is proposed to automatically generate vacation plans based on user preferences and situational aspects. Using different levels of abstraction, the result of the corresponding preference queries is always optimal and the result size is minimal. It consists of stereotype-specific and contextaware activities which are combined to create daily or even multi-day plans of activities. The correctness, completeness and optimality are assured by a preference calculus of strict partial orders. User preferences are initially collected and defined by a feedback questionnaire. The application is modelled by adequate preference compositions and the Preference SQL runtime system efficiently evaluates the resulting preference queries. The prototype proves that soft runtime requirements are met. Initial tests with real data from the industry-leading outdooractive platform indicate that the database-driven preference technology can successfully be employed to provide added value for vacation planning

    Naturalistische Erkenntnistheorie und das Problem der Außenweltskepsis

    Get PDF

    Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi

    Get PDF
    The fungal mycelium represents the essence of the fungal lifestyle, and understanding how a mycelium is constructed is of fundamental importance in fungal biology and ecology. Previous studies have examined initial developmental patterns or focused on a few strains, often mutants of model species, and frequently grown under non-harmonized growth conditions; these factors currently collectively hamper systematic insights into rules of mycelium architecture. To address this, we here use a broader suite of fungi (31 species including members of the Ascomycota, Basidiomycota and Mucoromycota), all isolated from the same soil, and tested for ten architectural traits under standardized laboratory conditions. We find great variability in traits among the saprobic fungal species, and detect several clear tradeoffs in mycelial architecture, for example between internodal length and hyphal diameter. Within the constraints so identified, we document otherwise great versatility in mycelium architecture in this set of fungi, and there was no evidence of trait ‘syndromes’ as might be expected. Our results point to an important dimension of fungal properties with likely consequences for coexistence within local communities, as well as for functional complementarity (e.g. decomposition, soil aggregation)

    MicroRNA-24 regulates vascularity after myocardial infarction

    Get PDF
    BACKGROUND: Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS: Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS: Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease. [KEYWORDS: Animals, Apoptosis/drug effects, Arterioles/pathology, Capillaries/pathology, Cell Hypoxia, Cells, Cultured/drug effects/metabolism, Collagen, Drug Combinations, Drug Evaluation, Preclinical, Endothelial Cells/ metabolism/pathology, GATA2 Transcription Factor/biosynthesis/genetics, Gene Expression Profiling, Heart Failure/etiology, Heme Oxygenase-1/biosynthesis/genetics, Laminin, Male, Mice, Mice, Inbred C57BL, MicroRNAs/antagonists & inhibitors/genetics/ physiology, Myocardial Infarc
    corecore