UNIVERSITÄT AUGSBURG

A Context-Aware and Preference-Driven
 Vacation Planner for Tourism Regions

Alfons Huhn ${ }^{\text {a }}$, Patrick Roocks ${ }^{\text {a }}$, Werner Kießling ${ }^{\text {a }}$, and Martin Soutschek ${ }^{\text {b }}$
${ }^{2}$ DBIS, Faculty of Applied Informatics
University of Augsburg, Germany
${ }^{\mathrm{b}}$ ALPSTEIN Tourismus GmbH \& Co. KG
Immenstadt, Germany

Copyright © A. Huhn, P. Roocks, W. Kießling, and M. Soutschek Institut für Informatik
Universität Augsburg
D-86135 Augsburg, Germany
http://www.informatik.uni-augsburg.de - all rights reserved -

Contents

1 Introduction 2
2 Basics of Preference-based Modelling and Querying 3
3 An Architecture of Context-aware and Preference-based Planners 5
3.1 Questionnaire as Starting Point 6
3.2 Context-aware Top-k Lists as Basic Set 8
3.3 Combinations of Elements of a Basic Set as State Space 8
3.4 Preference-based Evaluation of a State Space 12
4 Use case - Vacation Planner from Backend to Frontend 13
4.1 Questionnaire 14
4.2 Preference Composition 15
4.3 Daily Plan as a Parametric Component of Total Duration 15
4.4 Multi-Day Plan as a Parametric Component by Number of Days 16
4.5 Implementation and Performance 18
5 Summary and Outlook 18
References 19
Acknowledgements 20
A Appendix: Runtime Measurements of a Preference-Driven Planner 21
A. 1 Configuration and Software Architecture 21
A. 2 Basic Relations of the Outdooractive Database 22
A. 3 Taxonomies 22
A. 4 Top-k Query to Generate the Basic Set for Planning 23
A. 5 Generation of Equivalence Classes 24
A. 6 Generation of a State Space for Daily Plans 25
A. 7 Power Set of a Set of Activities 25
A. 8 Power Set of a Multiset of Activities / Equivalence Classes 26
A. 9 Restrictions of State Spaces 29
A. 10 Generation of Daily Plans by Preference Evaluation 30
A. 11 Generation of a State Space for Multi-Day Plans 31
A. 12 Assignment of Quality by Counting Conflicts 32
A. 13 Preference Evaluation of Multi-Day Plans 36
A. 14 Total Runtime as Summary 37

Abstract

Taking a Preference SQL approach, a context-aware vacation planner for on-site activities is proposed to automatically generate vacation plans based on user preferences and situational aspects. Using different levels of abstraction, the result of the corresponding preference queries is always optimal and the result size is minimal. It consists of stereotype-specific and contextaware activities which are combined to create daily or even multi-day plans of activities. The correctness, completeness and optimality are assured by a preference calculus of strict partial orders. User preferences are initially collected and defined by a feedback questionnaire. The application is modelled by adequate preference compositions and the Preference SQL runtime system efficiently evaluates the resulting preference queries. The prototype proves that soft runtime requirements are met. Initial tests with real data from the industry-leading outdooractive platform indicate that the database-driven preference technology can successfully be employed to provide added value for vacation planning.

Keywords: vacation planner; timetable; preference modelling; context awareness; optimality; best matches only semantics.

1 Introduction

Up to now, tourists inform about interesting vacation destinations by travel agencies, social relations, and online information. If the destination is chosen, on-site activities are influenced by the tourist information, landlords, and indigenous people. Their experience assigns roles, associated activities and interests to the tourists. These insiders give hints or suggestions, which seem appropriate. Often, even bad weather alternatives are offered to increase tourists' customer satisfaction by taking into account the actual context.

Anyhow the behaviour of clients is changing substituting analogue information by digital. These native digitals expect $24 / 7$ service everywhere. Typical up-to-date applications like www.tripit.com stick fixed points like airports or hotels together with driving directions to generate a linear vacation itinerary. Döring and Preisinger (2008) enhanced the underlying concept of dynamic packaging by a personalised search model based on preferences. At first, www.inspirock.com focuses on touristic points of interests which are connected by different modes of transportation and accommodation facilities afterwards. Obeying the precept of dichotomy, tourists often stay or even have to stay in a region and react to opportunities depending on circumstances changing every day. Thus, stereotype-specific and context-aware plans for on-site activities or attractions are desirable. A generic architecture implemented as a prototype is proposed which relies on databases and preferences generating best-suitable plans of on-site activities.

Planning of activities is a well-known branch of Artificial Intelligence as described e.g. by Ghallab, Nau, and Traverso (2004). Optimizing tasks, duty rosters, timetables, and schedules are assignment problems further explained by Burkard, Dell'Amico, and Martello (2012). However, preferences defined as strict partial orders are rarely supported by these approaches. Our prototype relies on the widespread and accepted use of SQL and applies both technologies for tourism applications.

2 Basics of Preference-based Modelling and Querying

The theory of preferences was first introduced by Kießling (2002) and Chomicki (2003).

- Definition Preference $\mathbf{P}=\left(\mathbf{A},<_{\mathrm{P}}\right)$:

Given a set A of attribute names, a preference P is a strict partial order $\mathrm{P}=\left(\mathrm{A},<_{P}\right)$, where $<_{\mathrm{P}} \subseteq \operatorname{dom}(\mathrm{A}) \times \operatorname{dom}(\mathrm{A})$.

This initial proposal of Kießling (2002) was implemented by Kießling and Köstler (2002) as Preference SQL, a complete run-time system. Preference SQL is still further developed by Kießling et al. (2011). All base preferences are derived from a base preference called $\operatorname{SCORE}($ anyAttribute). This preference denotes that all objects whose score value with regard to anyAttribute is smaller than others are considered to be better than those.

The use case of section 4 relies on the following specialisations of SCORE:

- LESS THAN (a, v) or $\operatorname{AROUND}(a, v)$ using an asymmetric or symmetric distance between the desired value v and others of an attribute a to be minimised as well as,
- $\operatorname{HIGHEST}(a)$ or $\operatorname{LOWEST}(a)$ for maximising or minimising the values of an attribute a.

These fundamental preferences as well as any resulting complex preferences $\left(p_{i}\right)$ are combined by the following complex preferences:

- The clause $p_{i} A N D p_{j}$ is stating that both preferences have the equal importance.
- The clause p_{i} PRIOR TO p_{j} is stating that preference p_{i} is more important than p_{j}.

Semantical and syntactical details can be found in the literature mentioned above. The most import feature of preference queries underlying this sound and complete theory of preferences as strict partial orders is the property of having best matches only (BMO) that guarantees the correctness and the optimality of the result set of preference queries.

This classical preference theory has to be reinterpreted in the context of hierarchical data structures stemming from the requirements of a planning application. Starting from Aristotle's quotation "The whole is more than the sum of its parts" the relation Aristotle looks like:

Table 1. Hierarchical data structure

Whole_name	Part_name	Part_attribute
\ldots	\ldots	\ldots
a_b_c	a	1
a_b_c	b	2
a_b_c	c	3
\ldots	\ldots	\ldots

This relational representation corresponds to a hierarchical data structure (tree) as shown in fig. 1:

Fig. 1. Part-whole hierarchy
Aristotle's gem may be expressed by:

SELECT	whole_name,
	-- A(.)
	SUM(part_attribute) + COUNT(part_attribute) - 1
	AS whole_attribute
FROM	Aristotle
GROUP BY	whole_name

This query focuses on the higher abstraction level "whole" by taking into account the lower abstraction level "part". Clearly, the result of this query may be used as a subquery of a structural identical query treating the just created wholes as parts of further wholes, etc.
Having a fixed count of iteration this process of self-similarity may be formulated as SQL2-query of iterated subqueries. But the resulting query is complex and the count of iteration is often unknown, however some conditions of termination are a priori known. Thus, the available recursion of SQL3 is the white knight.

Also the relation "Aristotle" can equivalently transformed to a non-standard relation using set-valued attributes like:

Table 2. Hierarchical data with set-valued attributes in SQL3

Whole_name	Whole_attribute	Part_names	Part_attributes
\ldots	\ldots	\ldots	\ldots
a_b_c	8	$\{a, b, c\}$	$\{1,2,3\}$
\ldots	\ldots	\ldots	\ldots

The attributes "Part_names" and "Part_attributes" are set-valued. No order exists among the set members. However, the enumeration of the set implicitly defines a total
order on the members of the set which can be interpreted as sequence. Such a stack of activities is represented in condensed form. Both interpretations of partial order or total order are useful in the context of planning, as shown later on.
The reinterpretation of the Kießling's preference definition is intended by following extension.

- Definition Preference $\mathbf{P}^{\prime}=\left(\mathbf{A},<_{\mathbf{P}}\right)$:

Given a multiset A of attribute names, a preference P^{\prime} is a strict partial order defined as

$$
\mathrm{P}^{\prime}=\left(\mathrm{P}(\mathrm{~A}),<_{\mathrm{P}^{\prime}}\right),
$$

where $<_{P} \subseteq \mathrm{~F}(\mathrm{P}(\mathrm{A})) \times \mathrm{F}(\mathrm{P}(\mathrm{A}))$. $\mathrm{P}(\mathrm{A})$ is the power set of the multiset A , and $\mathrm{F}(\mathrm{P}(\mathrm{A}))$ is a function whose input parameters are multiset members and the output is of type FLOAT. The involved operators have to be commutative. A(.) acts as an agglomerate like the SQL-aggregation on each member of the power set instance.

Simplifying the multiplicity function for multisets to the set indicator function of normal sets and constraining the power set $\mathrm{P}(\mathrm{A})$ to sets of size 1 , each set member is interpreted as an attribute value and the agglomerate $\mathrm{A}($.$) is defined as identity. This$ construction yields the original definition of the preference $P=\left(A,<_{P}\right)$. Zhang and Chomicki already introduced preferences over sets in 2011. But they restricted their work to sets of fixed cardinality. We insist on the whole power set of a multiset.

Aristotle's examples above defines the agglomerate A(.) as sum of "part_attribute" of all set members of $\mathrm{P}(\mathrm{A})$ plus the count of set members of $\mathrm{P}(\mathrm{A})$ minus 1 , where A is "part_attribute".

The power set $\mathrm{P}(\mathrm{A})$ urges the cooperation of SQL3 and Preference SQL defined as an extension of SQL2 as independent components to achieve following goals:

- Handling of hierarchical / recursive data structures by recursion of SQL3
- Transformation of set-valued types of SQL3 to atomic types of SQL2 by SQL3

Therefore a smart integration exists, since new preference constructors are not necessary. As first step, the interleafing of Preference SQL and SQL3 can be instrumented by combining SQL3 and Preference SQL in one script materialising the results of SQL3.

3 An Architecture of Context-aware and Preference-based Planners

In this section, a generic preference-driven architecture is proposed from a questionnaire as starting point to preference modelling and preference evaluation finally.

3.1 Questionnaire as Starting Point

A starting point of context-aware and preference-driven planners consists of:

- Defining a controlled vocabulary as basics.
- Using this vocabulary to define a questionnaire by getting feedback from users.

Controlled vocabularies base on terms having semantic relations among each other which are described by thesauri (ANSI/NISO Z39.19 [ANSI], 2005). Thus applica-tion-specific languages are defined on a solid base. Having technical systems implementing an application, the same model can be used by replacing thesauri with taxonomies or even ontologies defining classes, individuals, attributes, and relations. In any case, the closed world assumption (CWA) holds relying on a finite description of the world. The CWA states that only facts assigned as true are true. The CWA excludes the emergence of new terms or the use of synonyms known by clients of an application but unknown to the controlled vocabulary. Thus the open world assumption is preferable in dynamically changing applications. Having a database-oriented architecture NULL-values are paving the way to tackle this task as described by Gottlob and Zicari (1988). Preferences can also handle NULLs as demonstrated by Endres, Roocks, Wenzel, Huhn, and Kießling (2012). Thus the proposed generic architecture is independent of the closed or open world assumption.
After having defined the controlled vocabulary, it is convenient to gather the feedback of users through a questionnaire. The questionnaire approach can be applied as a webbased or traditional interview, in a stand-alone manner or directed by an interviewer. Interviewed people answer questions formulated in terms of the controlled vocabulary by evoking their rating. The procedure generates a Likert scale as defined by Likert (1932). The used terms, as part of the controlled vocabulary, have to be mapped to the attributes of relations relying on a database-oriented architecture.

Since the Likert terms are a subset of the controlled vocabulary and people do not necessarily answer all questions of a questionnaire, the problem of how to handle incomplete feedback arises. Based on the assumption that most terms can be arranged by taxonomies fulfilling the Liskov substitution principle (LSP) introduced by Liskov and Wing (2001), the rating of a term is valid until the rating of a more restricted subterm got a different rating as shown in fig. 2:

Fig. 2. Incomplete feedback and the consequences of LSP

Any taxonomy of terms is represented by nodes and blue-dotted arrows in a tree as shown in fig. 2. Nodes with black outlines correspond to the feedback of a user. The colour of a node is representing a possible class of feedback. If the root of the tree has not been rated by a user, a default rating has to be assumed (e.g. NULL shown by blue).

The questionnaire may be used as an

- Input for statistics after having collected a lot of interviews or as a
- Behaviour model of stereotypes.

The behaviour model of a stereotype as illustrated in fig. 2 is defined explicitly by a domain expert or through an analysis of user feedback from multiple interviews.
Now, preferences come into play by using the rated taxonomy of fig. 2 in this way:

- All items with the same rating constitute a layer.

This procedure directly results in a $L A Y E R E D_{l}$-preference as defined by Kießling (2002).

Assuming five layers, the transformation of the questionnaire may generate the following LAYERED ${ }_{5}$-preferences:

Fig. 3. Construction of two stereotype-specific LAYERED $_{5}$-preferences
Each layer of each preference consists only of terms. Trees inside a layer just visualise the provenience. Four empty layers exist in fig. 3. NULL values in blue are handled e.g. as yellow values. According to Kießling (2005) all items of the same layer are substitutable. Users are rating all of them as equally good known as regular

SV-semantics stating $S V$ as acronym for substitutable values as shown by the left preference.

Looking at the provenience, the right preference is evident by introducing finer SVclasses shown as black rectangles inside layers. Layers and also SV-classes consist of disjoint sets of items. SV-classes are named by the root of the corresponding subtree. Specific $S V$-semantics is shown by the right preference. Now, only members of the same SV-class are substitutable, but members of different SV-classes are not substitutable, even if they belong to the same layer as introduced by Kießling (2005). This construction is favourable having very different semantic concepts in the original taxonomy. Thus, they are not substitutable and the semantic diversity is obtained by composing a complex preference as in case of planning. In summary, specific SVsemantics widens coarse-grained classes to fine grained classes.

Having taxonomies, the importance of the involved taxonomies is reflected by preferences having

- Equal importance or,
- Having more, or having less importance respectively.

Thus, the complex preference constructors of Kießling (2002) can model user or system preferences, which are influenced by the stereotypes and the context as shown in the next section.

3.2 Context-aware Top-k Lists as Basic Set

Already Roocks, Endres, Mandl, and Kießling (2012) have demonstrated a model to construct context-aware preferences by the prioritisation of context-specific preferences assigned to each basic preference.

The planning system needs a basic set of at least k elements to generate plans. Thus, the system relies on the top-k operator of the Preference SQL system, guaranteeing that the result set has just size k.

3.3 Combinations of Elements of a Basic Set as State Space

From the above mentioned construction, each element of any context-aware result set is optimal with regard to the underlying preference. Next, combinations of these optimal elements are generated.

For planning each combination acts like a group subsuming its parts as a whole and having an appropriate agglomerate function $\mathrm{A}($.$) . A combination is a subset of a basic$ set aka activities. The order of execution inside the combination is out of interest. Each node has an assessment by the agglomerate. The state space is characterized by properties like:

- Repetition of elements of the basic set is forbidden, allowed, or restricted.
- Hard restrictions expressed on state space variables limit the state space size.
- Soft restrictions expressed on state space variables may model user or system preferences.
- The result of an agglomerate function is subject to a stereotype-specific preference to get appropriate combinations fulfilling the BMO-property.
- The state space grows exponentially.

According to Chapman (1987) nonlinear planning is sufficient. Thus, a plan is a partial order of operators in which an operator corresponds to an element of a contextaware top-k list mentioned in section 3.2. Hence, the planning result is always a nonlinear plan which is less prone to re-planning due to changes of context.

Following the principle of hierarchical planning as described by Wilkins (1986) a plan refinement process is proposed by using the output of a lower abstraction level as input of a higher abstraction level iteratively until a plan is created.

After the requirements of the planning task are apparent, the projection (part_name, part_attribute) of the excerpt in table 1 is the basic set in order to generate its power set as state space (see also its representation as set-valued relation shown in table 2), depicted in fig. 4.

Fig. 4. Power set as a state space of the basic set $\{a, b, c\}$
The nodes are the elements of the power set. The edges reflect all possibilities to generate the nodes of layer i with the help of the nodes of layer $i-1$. The structure is a lattice. The root of the lattice has per default NULL as value for the considered attribute, since "any attribute of [doing] nothing" is indetermined. Each application has to decide whether this state makes sense. Remember the NULL-handling of Preference SQL (Endres 2012) which maps NULL at runtime to any level or distance without any change of the underlying model.

The blue numbers at the left of each node show the return value of $\mathrm{A}($.$) having the$ numbers inside of each node as input. The states and their associated agglomerated attribute in blue are settled at a higher abstraction level than their components in black reflecting the structure of table 1 . Since the states can be constructed in different ways by following all paths from the root to the interesting state, a spanning tree shown in green avoids redundant work while generating the states. Having a database perspective, only the states and their agglomerated attributes are of interest modelling aspects at the whole-level. Having a hierarchical / recursive data structure, recursion of SQL3 generates the desired data structures. Having no a priori knowledge which states are illegal, the whole state space - a complete lattice - is generated. However, the use of a spanning tree involves an artificial dependency since children depend on the existence of their unique father and furthermore on the existence of all their ancestors. When heuristics (e.g. preferences) come into play at each depth during the generation process, a spanning tree algorithm is inappropriate, when the heuristics cannot guarantee monotony. A bad father swept off by the heuristics kills also its better descendants.

If only states are regarded the independence of its components is implicitly an assumption. No order is defined. The components behave like a set. Regarding the agglomerated attribute at the whole-level the function $\mathrm{A}($.$) has to be independent of$ the order of the input parameters. No history or a stack trace comes into play. This feature matches nicely the concept of partial plans having no order (dependency) defined on its activities. Details like the runtime of generating the power set of activities as state space are found in the appendix at the section A.7.
Following the principle of self-similarity or hierarchical planning as described by Wilkins (1986), multi-day plans obey the "part-whole" pattern as shown in fig. 5:

Fig. 5. Hierarchical planning of multi-day plans

Elements of a lower abstraction level may be reused several times by elements of a higher abstraction level indicated by blue arrows issuing a one-to-many relationship. The reuse of components may be interpreted as "conflict" or "shared resource". In the use case of vacation planning, the pragmatics is boredom. A refinement of the planning architecture is depicted in fig. 7 by reusing the concept of state spaces at different abstraction levels following the part-whole pattern. Also a preference evaluation takes place at each abstraction level to receive just the best matching objects.

Regarding the dichotomy of nodes and edges, another interpretation of fig. 4 is possible. The set of all paths starting from the root \{ \} as starting point s and having different length is generated. Now a path p1: s->a->a_c and a path p2: s->c->a_c have the same endpoint, which means they are equivalent in a node-oriented interpretation. In an edge-oriented interpretation paths can be handled different with respect to the agglomerated attribute, which is now associated to a path. The value may depend on the predecessor.
An equivalent transformation of the state space of fig. 4 into a search space is shown in fig. 6:

Fig. 6. Equivalent search space of the state space of fig. 4
Each node consists of the triple (activity; nodeAttribute; reuse). Reuse indicates the maximal count of visiting a node. To each directed edge the attribute "edgeAttribute" is assigned. For simplicity, blue bidirectional edges use two numbers: one for each incoming edge. The reuse is constraint to one. Therefore each path contains every node only once. All paths are generated from the starting point s to the endpoint e. Since the basic set $\{a, b, c\}$ has three members, the path length ranges from 1 to 4 . Each path now encodes the order of generation resulting in a total plan of activities. The count of total plans vastly exceeds the count of partial plans.
Following a path, the function $\mathrm{A}($.$) is defined by:$

- SUM(edgeAttribute) + SUM(nodeAttribute).
E.g. the path $s->a->b->c->e$ has the agglomerate $A()=.1+1+2+1+3+1+0+(-1)=8$ which corresponds to the state $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\mathrm{A}()=$.8 in fig. 4. The "empty" activity
encoded as path s->e has the agglomerate $\mathrm{A}()=$. NULL $-1=$ NULL which is handled by the NULL handling of preferences in Endres (2012).

Details like the runtime of generating the power set of a multiset of activities are found in the appendix at the section A. 8 .

As a special case of fig. 6, predefined graphs can be interpreted as an abstraction of maps. Having specified a starting point s and an endpoint e , the recursion takes care of the predefined transition relation of the graph to generate all paths from s to e obeying some conditions and preferences. Suitable routes are the outcome of this planning process.

3.4 Preference-based Evaluation of a State Space

As proof of concept the relation "top100" was created as set of (id, attribute)-tuples ranging from 1 to 100 . By creating a view, any top- k list with $\mathrm{k}<=100$ can be created as the basic set of experiments by creating different state spaces and by evaluating preferences on these state spaces.

First, we assume no repetition of elements. Thus the power set of the basic set having k elements is the desired state space.

Table 3. Execution time [s] of generating the power set based on k elements

\mathbf{k}	Execution time $[\mathbf{s}]$
5	0,138
10	0,144
15	1,057
20	28,567

Regarding table 3, an Intel i7-3540M notebook with 3.0 GHz and 16 GB was used. Obviously, smaller values of k fulfil the soft time constraints to generate the power set.

Second, we release the hard restriction of having no repetitions. A multiset is a representation of the state space whereupon the count of an element states the maximum of repetitions of this element. A power set is clearly a specialization of a multiset. The execution time of smaller multisets is similar to that of power sets shown in table 3 .

Preference queries are executed on these state spaces whereupon state space variables may be involved and interpreted by the application as shown in section 4.

4 Use case - Vacation Planner from Backend to Frontend

Having a database with relations like tours, points of interest (POIs), offers, and taxonomies of activities or POIs, the vacation planner constructs partial plans as suggestions of activities and delivers the result through a user-interface (UI) as illustrated in fig. 7. The resulting timetable of the vacation planner considers the stereotype assigned to the user, the region, and the situational context of users with the weather situation clearly having the most important impact.

Fig. 7. Software architecture of a vacation planner from backend to frontend
Top-k preference queries (oval) are used to get the k-best results based on the input relations and the context-aware and stereotype-specific preferences. The preference queries are refined in the following section 4.2, 4.3, and 4.3. Some transformations
(grey) like the building of equivalence classes to reduce the state space, as well as the following generation of state spaces, are necessary to construct input relations for successive preference queries. Three stages corresponding to Hierarchical Planning (Wilkins 1986) are pipelined to generate multi-day plans of which one is delivered to the customer per UI.

4.1 Questionnaire

Analysing the database of outdooractive.com, the richness of its semantics is expressed by following numbers of concepts (see table 4). The value of 1 for depth of taxonomy indicates that no hierarchy of concepts exists.

Table 4. Size and kind of Controlled Vocabulary

Semantics	Count of concepts	Depth of Taxonomy
POIs	654	4
Activities	68	4
Offers	112	3
Relations	162	1
Annotations	194	1

Next, concepts and stereotypes have to be matched by bias and aversion i.e. preferences. Influenced by the stereotypes described by Gibson and Yiannakis (2002), each semantic concept is rather explicitly denoted by numbers between 1 and 5 according to our model-driven approach and using a Likert scale.
Context is modelled by

- Weather (good / bad) and
- Season (summer / winter).

The weather forecast obtained through the outdooractive.com API is valid for three days and structured in time intervals of three hours. Changes of weather require and trigger the re-planning of vacation plans according to the new conditions. At the moment of planning, the actual forecast is used and the weather conditions serve as guards of integrity to be checked.
The region of any POI, activity, and offer is delivered by some of the above mentioned semantic relations.

Stereotype, region, and context act as keys to retrieve the context-aware and stereo-type-specific top-k lists and are generated by a preference composition as shown next.

4.2 Preference Composition

Having an application-specific view, those tours, attractions, and offers are preferable, which fulfil the following properties best:

- Since each stereotype has rated the available activities and they are convenient with respect to season and weather, only those activities were preferred which are better rated by its associated questionnaire.
- Activities are as important as POIs.
- Following the same principle as for activities, the hierarchy of POIs is transformed to a hierarchy of layers. Thus, those activities are preferred, which guarantee more attractive POIs than others.
- The knowledge of the provider is encoded in a ranking for each touristic object. Its experience is as important as activities or POIs.
The above specification creates the following, syntactically reduced, preference expression:

PREFERRING

activity LAYERED (\$best, \$good, \$equal, \$bad, \$worst)	AND	
$($ (count_of_best_pois HIGHEST PRIOR TO		
count_of_good_pois HIGHEST	PRIOR TO	
count_of_equal_pois HIGHEST)	PRIOR TO	
(count_of_worst_pois LOWEST PRIOR TO		
count_of_bad_pois LOWEST)) ranking HIGHEST		AND
and		

The result set consists of objects of the types "tours", "pois", and "offers" and it contains the prerequisites as keys to deliver the context-aware and stereotype-specific best objects as top-k lists. The terms "\$best", ... , "\$worst" are Preference SQL-specific macros which substitute the macro names by sets of concepts resulting from adequate queries to get just those concepts of the questionnaire with a specific rating. The middle term of the above expression in brackets is a priority chain and generates an ordered result list. The resulting specific top-k lists are used as basic set to generate daily plans.

4.3 Daily Plan as a Parametric Component of Total Duration

After generating a context-aware and stereotype-specific relation per region, the BMO-property of preferences guarantees the optimality of each tuple. Thus, the task consists of finding appropriate combinations of tuples to fill the time slots of a daily plan.
The attribute "duration" of type "float" is evaluated for all activities such as tours, POIs, and offers - i.e. activities. The combination of activities requires an agglomerate to obtain a total duration. Since transfer times were excluded to reduce the complexity of the initial prototype, the implemented agglomerate generally assumes 1 h as transport time between the activities that are suggested for. Clearly, each single activity may be used to generate the state space of its power set but often the basic set is already too large. Thus, equivalence classes of activities having n hours of duration are used to avoid the complexity of the state space. Since the equivalence classes may
contain several elements, a multiset is used as state space. This discretization nicely corresponds to time slots of a timetable shown at UI. A finer discretization generates more equivalence classes. The present prototype hints that a lower bound of $1 / 2$ hour is computationally manageable.

With regard to different weather conditions during a day, the total duration is handled as a parameter. Like a target function to be maximised, we formulate the specification that the total duration should be para_duration. It is always more agreeable if the duration is shorter than longer. The according preference looks like:

PREFERRING

> (total_duration LESS THAN \$para_duration PRIOR TO total_duration AROUND \$para_duration) AS duration_preference

These heuristics yields the desired behaviour of "good" daily plans. The name of the preference is duration_preference. According to the BMO-property tourists get perfect plans just having a total duration of para_duration or, alternatively, shorter ones. Since Preference SQL contains the WHERE-clause of SQL, the total duration is restricted by 24 hours reducing the size of the state space.

The resulting plans are nonlinear plans (Chapman 1987). There is no order of execution inside a combination of activities. Also the starting time is out of the scope having stereotypes and no individuals. The arrangement of activities is left to users at UI. At the end, the involved equivalence classes and their count of use are mapped to the atomic activities.

The above preference may be enriched for the stereotype "young \& fun" by adding a bias of diversity having the same importance:

PREFERRING

duration_preference
count_activity HIGHEST AND
In summary, the algorithm generates context-aware and stereospecific daily plans of a region and presents them as a vacation planner timetable for tourists.

4.4 Multi-Day Plan as a Parametric Component by Number of Days

As shown in the previous section, the preference-driven approach generates a set of optimal daily plans with respect to the total duration. The size of this set may be controlled by a TOP-k clause. The parameter of the next planning stage is the number n of days. Regarding the reliability of weather forecasts, the number of days is set to 3 per default, without loss of generality.

The repetition of the same activity is termed as a conflict to avoid that tourists are bored by a repeating suggestion. At this abstraction level, the state space offers the concepts of:

- Number of conflicts and
- Average distance of conflicting parties.

The specification demands a minimal number of conflicts. In case of conflict, a configuration of daily plans should maximise the average distance between the con-
flicting parties. Consequently, the target function is translated in the following preference:

PREFERRING

conflict_count LOWEST
PRIOR TO
average_distance_among_conflicts HIGHEST
Following the self-similarity of our design the BMO-property once more guarantees the optimality of the result set. It contains all optimal context-aware and stereotypespecific multi-daily plans per region to be displayed by a timetable at UI.

Finally, a linear timetable is constructed according to the extension theorem of Szpilrajn (1930). For every strict partial order, the generated (multi-)day plan is contained into a total order as shown in fig. 8:

Fig. 8. UI as timetable of the stereotype "Family" in the region Allgäu

The timetable is a marketing vision of outdooractive. The itinerary offers contextaware and stereotype-specific suggestions to tourists. It provides an interactive interface to arrange activities and to augment the plan with social events, meals, etc. It is evident that all activities follow the weather timeline of the forecast generating blocks of parametric total length (sub-daily plans).

4.5 Implementation and Performance

Details of the implementations are found in the appendix. The implementation relies on Preference SQL and SQL3. Both systems are running on Postgres databases. The run-time of the entire planning process is about one second for typical examples. Note that this process is not even a time-critical task.

The reactivity of the prototype already fulfils the soft time constraints of the application. Further runtime improvements are surely achieved if the Preference SQL prototype is exchanged by EXASolution 5.0. This preference implementation is supplied by the world's fastest analytic database of www.exasolution.com as proven in the TPC-H contest. The preference implementation of EXASOL AG is due to the project P-SOL in conjunction with the department of Prof. Kießling at the University of Augsburg. This project has also been funded by Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (grant no. IUK-398/002). Mandl, Kozachuk, Endres, and Kießling (2015) show the performance of skyline queries in EXASOL's distributed server farm by scaling the data volumes of the TPC-H benchmark ${ }^{1}$. Thus this preference implementation may pave the way for huge state spaces and their preference evaluation.

5 Summary and Outlook

Similar to suggestions given in tourism information centres or provided by local residents, the proposed preference-based architecture uses a database and Preference SQL to generate appropriate activity suggestions for tourists as daily plans or even multi-day plans. The prototype implements a generic planning architecture by defining a controlled vocabulary, and then by deriving a questionnaire. Stereotypes and context are associated to the questionnaire. The feedback of the questionnaire is afterwards transformed into preferences. They are composed to complex preferences at different abstraction levels. The preferences are further enriched by soft requirements of the application modelled as preferences, too.

The preference theory guarantees the correctness, completeness, and optimality of the result. This BMO-characteristic reduces also the size of the result of an abstraction level to be delivered as input to the next stage. For the whole chain of queries, there are evidently no unnecessary, missing, or even better results!

The inclusion of hard constraints, such as opening hours, vacancies or the availability of tickets, will be the next step to extend the prototype with the option to also book

[^0]offers. In addition, the transfer times between starting points and endpoints of subsequent activities have to be integrated to generate more realistic time schedules.

While preferences in the current version of the prototype are solely based on context and stereotype that each user is assigned to, embedding individual preferences will further improve the quality of plans generated for each user in the future. Personalisation can be then improved by adding sequential or temporal preferences, for example the preferred time to have lunch, or personal habits of doing activities in a specific order.

References

ANSI/NISO Z39.19 (2005). Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies.
Burkard, R., Dell'Amico, M. \& Marello S. (2012). Assignment Problems. Society for Industrial and Applied Mathematics.
Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence 32 (3): 333-377.
Chomicki, J. (2003). Preference formulas in relational queries. ACM Transactions on Database Systems 28(4): 427-488.
Döring, S. \& Preisinger, T. (2008). Personalisation and Situation Awareness of the Search Process in Tourism. In P. O'Connor, P., Höpken, W. and Gretzel, U. (Eds.), Information and Communication Technologies in Tourism 2008: Proceedings of the International Conference in Innsbruck, Austria. Springer Vienna: 497-598.
Endres, M., Roocks, P., Wenzel F., Huhn, A., \& Kießling, W. (2012). Handling of NULL Values in Preference Database Queries. $6^{\text {th }}$ Multidisciplinary Workshop on Advances in Preference Handling in conjunction with ECAI 2012. Montpellier, France.
Ghallab, M., Nau, D. \& Traverso, P. (2004). Automated planning theory and practice. Morgan Kaufmann Publishers.
Gibson, H. \& Yiannakis, A. (2002). Tourist roles, needs and the life course. Annals of Tourism Research 29: 358-383.
Gottlob, G., \& Zicari, R. (1988). Closed World Databases Opened Through Null Values. In F. Bancilhon and D. J. DeWitt (Eds.), VLDB '88 Proceedings of the $14^{\text {th }}$ International Conference of Very Large Data Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA: 50-61.
Kießling, W., Hafenrichter, B., Fischer, S. \& Holland, S. (2001). Preference XPath: A Query Language for E-Commerce. In H. U. Buhl, A. Huther and B. Reitwiesner (Eds.), Information Age Economy. Physika-Verlag: 427-440.
Kießling, W. (2002). Foundations of Preferences in Database Systems. In P. A. Bernstein, Y. E. Ioannidis, R. Ramakrishnan and D. Papadias (Eds.), VDLB '02: Proceedings of the $28^{\text {th }}$ International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA: 311-322.
Kießling, W. \& Köstler, G. (2002). Preference SQL - Design, Implementation, Experiences. In P. A. Bernstein, Y. E. Ioannidis, R. Ramakrishnan and D. Papadias (Eds.), VDLB '02: Proceedings of the $28^{\text {th }}$ International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA: 900-1001.
Kießling, W. (2005). Preference Queries with SV-Semantics. In J. R. Haritsa and T. M. Vijayaraman (Eds.), Advances in Data Management 2005 - Proceedings of the $11^{\text {th }}$ International Conference on Management of Data. Computer Society of India: 15-26.
Kießling, W., Endres, M. \& Wenzel, F. (2011). The Preference SQL System - An Overview. In J. R. Haritsa and T. M. Vijayaraman (Eds.), Bulletin of the Technical Committee on Data Engineering 34(2): 11-18.

Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology 140: 1-55.
Liskov, B. H., \& Wing, J. M. (2001). Behavioral Subtyping Using Invariants and Constraints. In: H. Bowman and J. Derrick (Eds.), Formal Methods For Distributed Processing: A Survey of Object-Oriented Approaches. Cambridge University Press New York, NY, USA: 254-280.
Mandl, S., Kozachuk, O., Endres, M. \& Kießling, W. (2015). Preference Analytics in EXASolution. 16. Fachtagung Datenbanksysteme für Business, Technologie und Web (BTW 2015), Hamburg, Deutschland.
Roocks, P., Endres, M., Mandl, S. \& Kießling, W. (2012). Composition and Efficient Evaluation of Context-Aware Preference Queries. In S. Lee, Z. Peng, X. Zhou, Y. Moon, R. Unland and J. Yoo (Eds.), Database Systems for Advanced Applications Proceedings of the $17^{\text {th }}$ International Conference DASFAA 2012. Springer Heidelberg Dordrecht London New York: 82-96.
Szpilrajn, E. (1930). Sur l'extension de l'ordre partiel. Fundamenta Mathematicae 16: 386-389.
Wilkins, D. E. (1986). Hierarchical Planning: Definition and Implementation. In J. B. H. du Boulay, D. Hogg and L. Steels (Eds.), Advances in Artificial Intelligence II, Proceedings of the $7^{\text {th }}$ European Conference on Artificial Intelligence, ECAI 86. NorthHolland: 659-671.
Zhang, X. \& Chomicki, J. (2011). Preference Queries over Sets. In Proceedings of 27th International Conference on Data Engineering (ICDE), IEEE: 1019-1030.

Acknowledgements

The project TSMP has been funded by Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (grant no. IUK-1307-0004). Thank students Emanuel Huber, Uli Schweikl, Johannes Kastner, and Natalia Odolad in chronological order for implementation support in TSMP.

A Appendix: Runtime Measurements of a Preference-Driven Planner

A. 1 Configuration and Software Architecture

Table 5. Preference SQL Server and Preference SQL Client

	Preference SQL Server	Preference SQL Client
CPU	Intel(R) Xeon(R) CPU E5540	Intel i7-3540M
RAM	74 GB	16 GB
Frequency	2.53 GHz	3.0 GHz
Hard Disk	2000.4 GB	1 GB
Database	Postgres 8.4.13	Postgres 9.3 .5
Name	Server (ursamajor)	local

Fig. 7. Software architecture of Vacation Planner from backend to frontend

A. 2 Basic Relations of the Outdooractive Database

The planner relies on following basic relations and their tuples:

- oa_tours \#343248
- oa_poi \# 591957
- oa_offer \#2841
- oa_tourismarea \#667

Concepts are related to each other by a semantic net which is implemented by the relation:

- bc_relationrole
\# 14420831

All relations have indices with regard to the primary key. A typical SQL query uses the semantic net to establish a semantic relation between concepts like activities and regions as follows:

```
SELECT t.oa_category_id, ta.pid
FROM oa_tour t, bc_relationrole r, oa_tourismarea ta
                            -- TourIsInTourismArea (26122)
WHERE t.pid \(=\) r.source_id and r.relationtype_id \(=26122\) and r.target_id \(=\)
    ta.pid and t.state \(=1\) and ta.state \(=1\)
```

Table 6. Runtime of SQL queries relying on bc_relationrole

	Server	Runtime	I/O
bc_relationrole	ursamajor	8.502	0.090

All joining attributes are indexed. Nevertheless, in a pre-processing stage the semantic net was eliminated by creating new relations which dispose of foreign keys referring the involved relations.

A. 3 Taxonomies

The planner relies on activities which are modelled by the attribute "category_id" in the relations "oa_tour", "oa_poi", and "oa_offer" having the semantics of doing something. Activities, points of interests (POIs), and offers are arranged in just one taxonomy:

- bc_category \#76990

Starting with any concept as root, more specialised concepts which area modelled as children point to their unique father and so forth until no more children exist. The resulting tree is implemented within a relational schema. Since Preference SQL is incapable of handling hierarchical data structures as Preference XPath (see Kießling, Hafenrichter, Fischer and Holland, 2001), "flat" relations were created by a SQL3 query as e.g.

```
WITH RECURSIVE category(extended_name, id, niveau) AS (
SELECT cast (name as text), pid, 1
FROM bc_category
WHERE pid=2002 -- root
UNION
SELECT c.extended_name || '/' | bcc.name, bcc.pid, c.niveau +1
FROM bc_category bcc, category c
WHERE bcc.parent_id = c.id
)
\begin{tabular}{ll} 
SELECT & \(*\) \\
FROM & category \\
ORDER BY & extended_name;
\end{tabular}
```

Table 7. Runtime of SQL3 query flattening the hierarchical relation "bc_category"

	Server	Runtime	I/O
bc_category	ursamajor	0.483	0.005

The attributes pid and parent_id have indices.
The semantic analysis of the outdooractive database is summarised by table 8 :
Table 8. Size and kind of Controlled Vocabulary

Semantics	Count of concepts	Depth of Taxonomy
POIs	654	4
Activities	68	4
Offers	112	3
Relations	162	1
Annotations	194	1

The terms of the controlled vocabulary are only partially used in queries and all queries are self-contained by having eliminated the vast ua_relationrole relation and relying on indexed foreign keys.

A. 4 Top-k Query to Generate the Basic Set for Planning

The planner needs a basic set of activities which are optimal with regard to a choosen stereotype and the actual context. Consider fig. 7 and the step indexed by 1.

To achieve this goal a preference is generated having the following generic structure: modelled by

- activity PARETO poi_asssessment PARETO ranking

The Preference SQL query is

```
SELECT sta.*, level(p_activity) as level_activity, level(p_ranking) as
    level_ranking
FROM stereotype_tour_assessment sta
PREFERRING
    (activity_layer lowest 1,1 as p_activity)
    and
    ((poi_count_of_layer_1 highest prior to poi_count_of_layer_2
    highest prior to poi_count_of_layer_3 highest prior to
    poi_count_of_layer_5 lowest prior to poi_count_of_layer_4
    lowest) as p_poi)
    and
    (ranking between \(80,100,20\) as p_ranking)
```

Table 9. Runtime of a top-k query for generating the basic set of activities

	Server	Runtime $[\mathbf{s}]$	$\mathbf{I} / \mathbf{O}[\mathbf{s}]$	\# Tuples
BMO	ursamajor	0.648	0.000	5
Top 10	ursamajor	0.632	0.002	10
Top 20	ursamjor	0.695	0.001	20
Top 100	ursamajor	0.703	0.015	100

The sterotype_tour_assessment relation is a further condensed relation of tours and POIs having 1644 tuples. The region is Allgäu and the stereotype is athlete having good weather conditions. The preference is evaluated by BNL.

By pre-processing the underlying database, the context-aware preferences are evaluated for each configuration defined by context and stereotype. These parameters are stored together with the result set of the context-aware preference evaluation. Later on, they are used as filters to get the correct result set for any context. The context-aware result set defines the basic set to generate combinations of its set elements as nodes of an abstract state space as shown in the next steps of fig. 7.

A. 5 Generation of Equivalence Classes

After having generated the basic set of the planner, the most interesting attribute is duration being of type FLOAT. All values of this attribute are transformed to INT by CEIL(anyAttribute/divisor)::int \rightarrow equivClass_ID and counted per the discretised attribute. These tuples (anyDiscreteAttribute, count) are a representation of a multiset used as input to a state space of equivalence classes. Consider fig. 7 and the step indexed by 3 .

Following query is used:
SELECT discreteDuration as equivClass_ID, count(*)
FROM (SELECT ceil(duration/60)::int4 as discreteDuration -- n hours
FROM stereotype_tour_assessment
) as tmp
GROUP BY discreteDuration
The costs of this transformation are negligible. The equivClass_ID is the primary key of a new relation and acts as filter by

- WHERE anyAttribute > equivClass_ID - 1 AND anyAttribute < = equivClass_ID in order to identify all members of an equivalence class in the original relation.

A. $6 \quad$ Generation of a State Space for Daily Plans

The combination of top-k elements of the basic set is modelled by a state space. Any attribute of the basic set may be agglomerated:

- Duration $\quad \rightarrow$ total duration of combination
- Multilevel \rightarrow overall quality
E.g. the duration attribute is used.

A. 7 Power Set of a Set of Activities

A power set guarantees that each element of the basic set appears only uniquely in each combination. Consider fig. 7 and the step indexed by 4.
The basic structure of the query is:
CREATE temp sequence seq;
CREATE table ua_day_statespace as
WITH RECURSIVE stateSpace (ancestors, ego, agglomerate, iteration, id, resources) AS (

SELECT	ARRAY[0::int4] as ancestors, t.id as ego, t.duration as agglomerate, 1 as iteration, nextval('seq') as id, cast $\left(2^{\wedge}\right.$ (t.id-1) as bigint) as resources
	basic_set t
FROM	t.id $<=5$-- parameter: $5,10,15,20, \ldots$
WHERE	-- AND t.duration $<=24$

UNION

```
            SELECT array_cat(s.ancestors, ARRAY[s.ego]) as ancestors, t.id as
                        ego, s. agglomerate + t.duration as agglomerate,
                        s.iteration +1 as iteration, nextval('seq') as id,
                resources | cast( ( ^ (ego-1) as bigint) as resources
                    FROM
                        basic_set t, stateSpace s
                    WHERE t.id > s.ego
                                    -- AND s. agglomerate + t.duration <= 24 -- restriction
                                    AND t.id <= 5 -- parameter: 5, 10,15,20,\ldots
)
SELECT *
FROM stateSpace
UNION
-- NULL-Element nach Bedarf
SELECT NULL, NULL, \(0,0,0,0\)
ORDER BY iteration, ancestors, ego
```

Table 10. Runtime of generating the state space of a set of activities

Size of basic set: \mathbf{k}	Server	Runtime [s]	I/O [s]	\# Tuples
5	local	0.062	0.000	32
10	local	0.194	0.000	1024
15	local	0.657	0.000	32768
17	local	2.238	0.000	131072
20	local	23.985	0.000	1048576

A. 8 Power Set of a Multiset of Activities / Equivalence Classes

A multiset allows the reuse of any element in the basic set several times in each combination. For each element the maximal reuse is constricted as individual parameter. Consider fig. 7 and the step indexed by 4.

The basic structure of the query is:
CREATE temp sequence seq;
-- ALTER SEQUENCE seq RESTART WITH 1;

CREATE table ua_day_statespace
AS
WITH RECURSIVE stateSpace (id, ancestors, agglomerate, iteration,
freedom_degree)
AS (
WITH
para AS (
SELECT $\quad 5$ as cardinal_number --Parameter: 5, 10, 15, 20
),
restriction AS (
SELECT ARRAY (select $1 \quad-$ constant $1=$ Power set

FROM basic_set t, para p
WHERE t.id <= p.cardinal_number
ORDER BY
id) as init
) -- WITH restriction_init

SELECT nextval('seq') as id, array_cat(ARRAY[0::int4],
ARRAY[t.id::int4]) as ancestors, t.duration as agglomerate,

1 as iteration, array_cat(array_cat(r.init [1:t.id-1],
ARRAY [r.init[t.id] -1]),
r.init [t.id +1:array_length(r.init, 1)]) as freedom_degree

FROM basic_set t, restriction r, para p
WHERE t.id < = p.cardinal_number
-- and t.duration <= 24 -- restriction

UNION

```
            SELECT nextval('seq') as id, array_cat(s.ancestors,
                                    ARRAY[t.id::int4]) as ancestors,
                                    s. agglomerate + t.duration as agglomerate,
                                    s.iteration +1 as iteration,
                                    -- DEC() after use
                                    array_cat( array_cat( s.freedom_degree [1:t.id-1],
                                    ARRAY [s.freedom_degree[t.id] -1]),
                                    s.freedom_degree [t.id +1:array_length(s.freedom_degree,
                                    1)]) as freedom_degree
            FROM basic_set t, stateSpace s, para p
                WHERE t.id <= p.cardinal_number -- Parameter
                    -- AND s. agglomerate + t.duration <= 24 -- restriction
                    AND s.freedom_degree[t.id] > 0 -- restriction of reuse
                            -- only 1 representant
                    AND t.id >= s.ancestors[s.iteration+1]
)
\begin{tabular}{|c|c|c|c|}
\hline SELECT & \multicolumn{3}{|l|}{*} \\
\hline FROM & \multicolumn{3}{|l|}{stateSpace} \\
\hline \multicolumn{4}{|l|}{UNION} \\
\hline \multicolumn{4}{|l|}{-- NULL, if necessary} \\
\hline SELECT & \multicolumn{3}{|l|}{0, ARRAY[0::int4], 0,0 , init} \\
\hline \multicolumn{4}{|l|}{FROM} \\
\hline & (SELECT & ARRAY (select 1 & -- constant \(1=\) Power set \\
\hline & FROM & basic_set t & \\
\hline & WHERE & t.id \(<=5\) & -- Parameter \\
\hline & ORDR BY & id) as init & \\
\hline & ) as restrict & & \\
\hline
\end{tabular}
ORDER BY iteration, ancestors;
```

Table 11. Runtime of generating the state space of a multiset of activities / equivalence classes

Size of basic set: \mathbf{k}	Server	Runtime	I/O	\# Tuples
5	local	0.129	0.000	32
10	local	0.172	0.000	1024
15	local	1.029	0.000	32768
17	local	3.345	0.000	131072
20	local	28.657	0.000	1048576

The reuse of elements is restricted to 1 . Thus a power set is generated in order to compare the runtime of both generation algorithms, easily.

A. 9 Restrictions of State Spaces

Normally, every application implies hard constraints which cut the state space. Creating a daily plan with hourly activities, the total duration is always less equal 24 hours. The hard constraint is:

- WHERE agglomerate <= 24

This restriction is valid for a power set based on a set (S) as well as based on a multiset (MS). The queries of g) and h) contain this restriction as comment.

Table 12. Runtime of generating a restricted state space

Size of basic set: \mathbf{k}	Server	\# Tuples	Reduction	Runtime $[\mathbf{s}], \mathbf{S}$	Runtime $[\mathbf{s}], \mathbf{M S}$
5	local	32	0.00%	0.099	0.104
10	local	394	$61,52 \%$	0.109	0.126
15	local	676	$97,94 \%$	0.121	0.132
20	local	751	$99,43 \%$	0.146	0.185
25	local	762	$99,93 \%$	0.136	0.143

Activities are discretised to get half-hour or hourly activities as equivalence classes. Clearly, a finer discretisation achieves a greater state space and therefore a longer runtime.

A. 10 Generation of Daily Plans by Preference Evaluation

Consider fig. 7 and the step indexed by 5. Following two preferences are of interest:

1) PREFERRING
(total_duration LESS THAN 8,1 PRIOR TO
total_duration AROUND 8, 1) AS duration_preference
2) PREFERRING
(activity_count HIGHEST) AS alternation_preference

The agglomerated attribute corresponds to the total duration. It is handled as a parameter depending on stereotype and context.

The preference query P1 with 1) is:
CREATE TABLE ua_daily_plan_1dim
AS
SELECT id, agglomerate, level(duration_preference)
FROM ua_day_statespace
PREFERRING
(agglomerate LESS THAN 8, 1 PRIOR TO
agglomerate AROUND 8, 1) AS duration_preference

The preference query P2 with 1) PARETO 2) is:
CREATE TABLE ua_daily_plan_2dim
AS
SELECT id, agglomerate, iteration, level(duration_preference),
level(alternation_preference)
FROM ua_day_statespace
PREFERRING
(agglomerate LESS THAN 8,1 PRIOR TO
agglomerate AROUND 8, 1 AS duration_preference)
AND
(iteration HIGHEST 100, 1 AS alternation_preference)

Table 13. Runtime of two instances of the preference evaluation of the same state space for daily plans defined on basic sets of different size k

Size of basic set: k	Server	P1: BMO of \#, Runtime [s]	P2: BMO of \#, Runtime [s]:
5	local	3 of $32,0.089$	4 of $32,0.077$
10	local	6 of $394,0.166$	5 of $394,0.132$
15	local	6 of $676,0.115$	5 of $676,0.219$
20	local	6 of $751,0.187$	5 of $751,0.088$
25	local	6 of $762,0.150$	5 of $762,0.085$

BMO is the number of the best matching objects of a preference P. \# is the count of daily plans. With regard to preference P1 all plans are perfect because they all have a total duration of 8 hours.

A. 11 Generation of a State Space for Multi-Day Plans

Consider fig. 7 and the step indexed by 7 . Now combinations of daily plans are constructed. The basic set of the state space generation for multi-day plans is the result set of the best suitable daily plans generated by a top-k preference query.

Following query generates the state space of multi-day plans as power set, since each outcome of a daily plan is unique:

CREATE temp SEQUENCE seq;
-- ALTER SEQUENCE seq RESTART WITH 1;
CREATE TABLE ua_week_statespace
AS
WITH RECURSIVE stateSpace (weeklyplan_id, ancestors, agglomerate, iteration)
AS (
WITH init_wp
AS (
SELECT DISTINCT id AS dailyplan_id, agglomerate
FROM
ua_daily_plan
)

SELECT nextval('seq') as weeklyplan_id, ARRAY[w.dailyplan_id] as ancestors, agglomerate, 1 as iteration

FROM init_wp w

UNION

SELECT	DISTINCT nextval('seq') as weeklyplan_id,
	array_cat(ARRAY[w.dailyplan_id],
	s.ancestors) as ancestors,
	s. agglomerate + w. agglomerate as agglomerate,
	s.iteration +1 as iteration
FROM	init_wp w, stateSpace s
WHERE	w.dailyplan_id > s.ancestors[1] --StateSpace=PowerSet

SELECT *

FROM stateSpace
ORDER BY iteration, ancestors
The runtime behaviour is similar to table 10, since a power set is generated as state space. The result size of the underlying top-k query with TOP LEVEL $=0$ ranges from 3 to 6 as shown in table 13, therefore 0.2 sec seems to be an appropriate upper limit of the runtime.

A. 12 Assignment of Quality by Counting Conflicts

Consider fig. 7 and the step indexed by 8 . Now adequate combinations of daily plans are needed. Adequateness is modelled by following preference:

- PREFERRING count_of_conflicts LOWEST

A conflict is defined as the repetition of an activity to avoid ennui of tourists.
The number of conflicts is associated to each state of the state space as a quality assignment by following query:
CREATE TABLE ua_week_conflicts
AS
WITH para
AS (
SELECT 3 as count_of_days
),

```
-- WP => {DP} => {Activity}
partner
AS (
    SELECT weeklyplan_id, dailyplan_id, activity
    FROM
    (
        SELECT weeklyplan_id, dailyplan_id,
        unnest(d.ancestors) as activity
                FROM ua_day_statespace_10 d,
                (
                        SELECT w.weeklyplan_id,
                                    unnest(w.ancestors) as
                                    dailyplan_id
                                    FROM ua_week_statespace_1dim_10
                                    w, para
                                    -- WHERE w.iteration =
                                    para.count_of_days
                                    --Parameter:Size of time table
                ) as wp2Ndp
                    WHERE dailyplan_id = d.id
    ) as wp2Ndp2Nactivity
    WHERE activity <> 0
),
```

```
-- relation graph per WP
pairing
AS (
    SELECT wp1.weeklyplan_id as weeklyplan_id,
                        wp1.dailyplan_id as dailyplan_id_1,
                    wp1.activity as activity_1,
                        wp2.dailyplan_id as dailyplan_id_2,
                wp2.activity as activity_2
    FROM partner wp1, partner wp2
    -- upper triangular matrix (symmetry)
    WHERE wp1.weeklyplan_id = wp2.weeklyplan_id
        AND wp1.dailyplan_id < wp2.dailyplan_id
```

UNION
-- Plus combinations of ONE element
SELECT weeklyplan_id as weeklyplan_id, dailyplan_id as dailyplan_id_1, activity as activity_1, null as dailyplan_id_2, null as activity_2
FROM partner

WHERE weeklyplan_id IN
(SELECT weeklyplan_id
FROM ua_week_statespace_1dim_10
WHERE \quad iteration = 1)
),
-- conflict graph
conflict_graph_per_wp
AS (
SELECT weeklyplan_id, dailyplan_id_1, dailyplan_id_2,
activity_1, activity_2,
CASE WHEN activity_1 = activity_2
THEN 1 -- conflict
ELSE 0
END AS conflict
FROM pairing
),
agg_conflict_graph_in_wp
AS (
SELECT weeklyplan_id, dailyplan_id_1, dailyplan_id_2, sum(conflict) as agg_count_conflict_in_days

FROM conflict_graph_per_wp
GROUP BY weeklyplan_id, dailyplan_id_1, dailyplan_id_2

SELECT weeklyplan_id, sum(agg_count_conflict_in_days)
as count_conflict_of_wp
FROM agg_conflict_graph_in_wp
GROUP BY weeklyplan_id
ORDER BY weeklyplan_id;

Table 14. Runtime of counting conflicts of a 3-day plan

Size of basic set: \mathbf{k}	Server	Runtime [s]
5	local	0.143
10	local	0.139
15	local	0.187
20	local	0.203
25	local	0.151

A. 13 Preference Evaluation of Multi-Day Plans

Consider fig. 7 and the step indexed by 8, again. Now all information is available to appraise the adequate combinations of daily plans. Adequateness is modelled by following preference:

- PREFERRING count_of_conflicts LOWEST

The following preference query minimises the count of conflicts:
CREATE TABLE ua_weekly_plan
AS
SELECT w.*, level(p_conflict) AS conflict_level
FROM ua_week_conflicts c, ua_week_statespace w
WHERE c.weeklyplan_id = w.weeklyplan_id
-- Parameter: number of days in the weekly plan / time table
AND w.iteration $=3$
PREFERRING
c.count_conflict_of_wp LOWEST 0,1 AS p_conflict

GROUPING
iteration
-- TOP 10;

Table 15. Runtime of preference evaluation in a state space for multi-day plans defined on a basic set of size k

(Size of initial basic set, \# optimal daily plans)	Server	Runtime $[\mathbf{s}]$	\# Conflicts	\mid BMO\|
$(5,3)$	local	0.080	3	1
$(10,6)$	local	0.101	0	5
$(15,6)$	local	0.109	0	5
$(20,6)$	local	0.099	0	5
$(25,6)$	local	0.103	0	5

If the k -parameter of the top-k-operator is greater than 10 , sufficiently many alternatives exist to avoid conflicts. The number of days in the time table was restricted to 3 , but the state space also disposes of combinations having less or even more than 3day timetables.

If conflicts exist, the shared activities should have a maximal distance between their occurrences.

A. 14 Total Runtime as Summary

To measure the total runtime, a consistent use case was defined by:

- \quad Size of basic set $=10$
- Size of best activities for 1 day $=10$
- Maximal size of alternative multi-day plans $=10$
- \quad Maximal days $=5$

TOP 10 as part of Preference SQL achieves the above requirements. The planner is parameterised by a hard constraint of having <= 5 days.

Table 16. Total Runtime of the use case

Query	SQL3	PSQL	Response time
h) + i) Restricted power set of daily activities	0.200		
j) Preference wrt. daily total duration (P1)		0.185	
k) Power set of daily plans	0.240		
l) Quality assessment by count of conflicts	0.101		
m) Preference wrt. minimal conflicts		0.315	
Total runtime of component	$\mathbf{0 . 5 4 1}$	$\mathbf{0 . 5 0 0}$	
Total runtime of application			$\mathbf{1 . 0 4 1}$

The total runtime of about 1 second is sufficient to achieve the runtime requirements of a planning application on pre-processed data of the Alpstein database.

Caveat

The spreading of multiple measurements may surpass 10 percent of the minimal measurement.

[^0]: ${ }^{1}$ http://www.tpc.org/tpch/spec/tpch2.17.0.pdf

