648 research outputs found
Euclidean Black Hole Vortices
We argue the existence of solutions of the Euclidean Einstein equations that
correspond to a vortex sitting at the horizon of a black hole. We find the
asymptotic behaviours, at the horizon and at infinity, of vortex solutions for
the gauge and scalar fields in an abelian Higgs model on a Euclidean
Schwarzschild background and interpolate between them by integrating the
equations numerically. Calculating the backreaction shows that the effect of
the vortex is to cut a slice out of the Euclidean Schwarzschild geometry.
Consequences of these solutions for black hole thermodynamics are discussed.Comment: 24 page
CYP450 phenotyping and metabolite identification of quinine by accurate mass UPLC-MS analysis: a possible metabolic link to blackwater fever
BACKGROUND: The naturally occurring alkaloid drug, quinine is commonly used for the treatment of severe malaria. Despite centuries of use, its metabolism is still not fully understood, and may play a role in the haemolytic disorders associated with the drug. METHODS: Incubations of quinine with CYPs 1A2, 2C9, 2C19, 2D6, and 3A4 were conducted, and the metabolites were characterized by accurate mass UPLC-MS(E) analysis. Reactive oxygen species generation was also measured in human erythrocytes incubated in the presence of quinine with and without microsomes. RESULTS: The metabolites 3-hydroxyquinine, 2’-oxoquininone, and O-desmethylquinine were observed after incubation with CYPs 3A4 (3-hydroxyquinine and 2’-oxoquininone) and 2D6 (O-desmethylquinine). In addition, multiple hydroxylations were observed both on the quinoline core and the quinuclidine ring system. Of the five primary abundance CYPs tested, 3A4, 2D6, 2C9, and 2C19 all demonstrated activity toward quinine, while 1A2 did not. Further, quinine produced robust dose-dependent oxidative stress in human erythrocytes in the presence of microsomes. CONCLUSIONS: Taken in context, these data suggest a CYP-mediated link between quinine metabolism and the poorly understood haemolytic condition known as blackwater fever, often associated with quinine ingestion
Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma.
BACKGROUND: Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear.
METHODS: To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation).
RESULTS: Monocyte specific RNA-sequencing identified novel neuroinflammatory pathways early in glaucoma pathogenesis. Targeting these processes pharmacologically (DS-SILY) or genetically (Itgam / CD11b knockout) reduced monocyte entry and provided neuroprotection in DBA/2 J eyes.
CONCLUSIONS: These data demonstrate a key role of monocyte-like cell extravasation in glaucoma and demonstrate that modulating neuroinflammatory processes can significantly lessen optic nerve injury
Bremsstrahlung in the gravitational field of a cosmic string
In the framework of QED we investigate the bremsstrahlung process for an
electron passing by a straight static cosmic string. This process is precluded
in empty Minkowski space-time by energy and momentum conservation laws. It
happens in the presence of the cosmic string as a consequence of the conical
structure of space, in spite of the flatness of the metric. The cross section
and emitted electromagnetic energy are computed and analytic expressions are
found for different energies of the incoming electron. The energy interval is
divided in three parts depending on whether the energy is just above electron
rest mass , much larger than , or exceeds , with the
string mass per unit length in Planck units. We compare our results with those
of scalar QED and classical electrodynamics and also with conic pair production
process computed earlier.Comment: 21 pages, to appear in Phys. Rev. D., KONS-RGKU-94-0
Astrocytes regulate GLP-1 receptor-mediated effects on energy balance
© 2016 the authors. Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9–39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9–39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control
Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus
The American lobster Homarus americanus is a decapod crustacean with both high economic and scientific importance. To facilitate physiological investigations of peptide transmitter/hormone function in this species, we have used matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF-MS/MS) to elucidate the peptidome present in its nervous system and neuroendocrine organs. In total, 84 peptides were identified, including 27 previously known H. americanus peptides (e.g. VYRKPPFNGSIFamide [Val1-SIFamide]), 23 peptides characterized previously from other decapods, but new to the American lobster (e.g. pQTFQYSRGWTNamide [Arg7-corazonin]), and 34 new peptides de novo sequenced/detected for the first time in this study. Of particular note are a novel B-type allatostatin (TNWNKFQGSWamide) and several novel FMRFamide-related peptides, including an unsulfated analog of sulfakinin (GGGEYDDYGHLRFamide), two myosuppressins (QDLDHVFLRFamide and pQDLDHVFLRFamide), and a collection of short neuropeptide F isoforms (e.g. DTSTPALRLRFamide, and FEPSLRLRFamide). Our data also include the first detection of multiple tachykinin-related peptides in a non-brachyuran decapod, as well as the identification of potential individual-specific variants of orcokinin and orcomyotropin-related peptide. Taken collectively, our results not only expand greatly the number of known H. americanus neuropeptides, but also provide a framework for future studies on the physiological roles played by these molecules in this commercially and scientifically important species
Energy and Angular Momentum Densities in a Godel-Type Universe in the Teleparallel Geometry
The main scope of this research consists in evaluating the energy-momentum
(gravitational field plus matter) and gravitational angular momentum densities
in the universe with global rotation, considering the Godel-Obukhov metric. For
this, we use the Hamiltonian formalism of the Teleparallel Equivalent of
General Relativity (TEGR), which is justified for presenting covariant
expressions for the considered quantities. We found that the total energy
density calculated by the TEGR method is in agreement with the results reported
by other authors in the literature using pseudotensors. The result found for
the angular momentum density depends on the rotational parameter as expected.
We also show explicitly the equivalence among the field equations of the TEGR
and Einstein equations (RG), considering a perfect fluid and Godel-Obukhov
metric.Comment: 20 pages, no figures. Revised in view of Referee's comments. Version
to appear in the Gravitation and Cosmolog
Deviation From \Lambda CDM With Cosmic Strings Networks
In this work, we consider a network of cosmic strings to explain possible
deviation from \Lambda CDM behaviour. We use different observational data to
constrain the model and show that a small but non zero contribution from the
string network is allowed by the observational data which can result in a
reasonable departure from \Lambda CDM evolution. But by calculating the
Bayesian Evidence, we show that the present data still strongly favour the
concordance \Lambda CDM model irrespective of the choice of the prior.Comment: 15 Pages, Latex Style, 4 eps figures, Revised Version, Accepted for
publication in European Physical Journal
TESS Hunt for Young and Maturing Exoplanets (THYME) IX: a 27 Myr extended population of Lower-Centaurus Crux with a transiting two-planet system
We report the discovery and characterization of a nearby (~ 85 pc), older (27
+/- 3 Myr), distributed stellar population near Lower-Centaurus-Crux (LCC),
initially identified by searching for stars co-moving with a candidate
transiting planet from TESS (HD 109833; TOI 1097). We determine the association
membership using Gaia kinematics, color-magnitude information, and rotation
periods of candidate members. We measure it's age using isochrones,
gyrochronology, and Li depletion. While the association is near known
populations of LCC, we find that it is older than any previously found LCC
sub-group (10-16 Myr), and distinct in both position and velocity. In addition
to the candidate planets around HD 109833 the association contains four
directly-imaged planetary-mass companions around 3 stars, YSES-1, YSES-2, and
HD 95086, all of which were previously assigned membership in the younger LCC.
Using the Notch pipeline, we identify a second candidate transiting planet
around HD 109833. We use a suite of ground-based follow-up observations to
validate the two transit signals as planetary in nature. HD 109833 b and c join
the small but growing population of <100 Myr transiting planets from TESS. HD
109833 has a rotation period and Li abundance indicative of a young age (< 100
Myr), but a position and velocity on the outskirts of the new population, lower
Li levels than similar members, and a CMD position below model predictions for
27 Myr. So, we cannot reject the possibility that HD 109833 is a young field
star coincidentally nearby the population.Comment: 23 pages, 15 figures, Accepted for publication in A
- …