21 research outputs found

    Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests

    No full text
    The amount of transmitted light in the understories of forest stands affects many variables such as biomass and diversity of the vegetation, tree regeneration and plant morphogenesis. Therefore, its prediction according to main tree or stand characteristics, without the need for difficult and costly light measurements, would be most useful for many different users and scientists. Transmitted global solar radiation was measured using tube solarimeters in the understories of 204 plots of even-aged coniferous stands of four species (Pseudotsuga menziesii, Picea abies, Larix sp. and Pinus sylvestris) in a wide range of ecological and management conditions in the temperate climate zone. From these data, a range of simple models based on the Beer-Lambert law was built and fitted to predict mean stand radiation transmittance from basic stand traits and management features: stand basal area, stand age, time since last thinning, and last thinning intensity. Forest managers can use it to predict understory light availability and adapt their silviculture to various objectives.Simulation de l’éclairement relatif dans le sous-bois de peuplements réguliers de conifères en forêts tempérées. La quantité de lumière disponible dans le sous-bois des forêts affecte de nombreux processus tels que la production de biomasse et la diversité de la végétation, la régénération des arbres et la morphogénèse des plantes. Prédire cette quantité sans avoir à effectuer de mesures de lumière délicates et coûteuses serait donc d'un grand intérêt pour différents utilisateurs et chercheurs. Le rayonnement solaire global transmis a été mesuré avec des solarimètres dans le sous-bois de 204 parcelles de peuplements réguliers de quatre espèces de conifère (Pseudotsuga menziesii, Picea abies, Larix sp. et Pinus sylvestris) dans diverses conditions écologiques et de gestion en climat tempéré. A partir de ces données et en utilisant le formalisme de la loi de Beer-Lambert, plusieurs modèles ont été bâtis et ajustés simulant la transmission de l'éclairement sous couvert en fonction des caractéristiques dendrométriques simples des peuplements étudiées et de leur gestion : surface terrière et âge du peuplement, durée depuis la dernière éclaircie et intensité de celle-ci. Ces outils pourraient être facilement utilisés par les gestionnaires forestiers pour estimer le niveau d’éclairement sous couvert et ainsi adapter leur sylviculture à divers objectifs

    Foliage randomness and light interception in 3D digitized trees:an analysis of 3D discretization of the canopy

    No full text
    International audienceLight models for vegetation canopies based on the turbid medium analogy are usually limited by the basic assumption of random foliage dispersion in the canopy space. The objective of this paper was to assess the effect of three possible sources of non-randomness in tree canopies on light interception properties. For this purpose, four three-dimensional (3-D) digitized trees and four theoretical canopies one random and three built from fractal rules were used to compute canopy structure parameters and light interception, namely the sky-vault averaged STAR (Silhouette to Total Area Ratio). STAR values were computed from (1) images of the 3-D plants, and (2) from a 3-D turbid medium model using space discretization at different scales. For all trees, departure from randomness was mainly due to the spatial variations in leaf area density within the canopy volume. Indeed STAR estimations, based on turbid medium assumption, using the finest space discretization were very close to STAR values computed from the plant images. At this finest scale, foliage dispersion was slightly clumped, except one theoretical fractal canopy, which showed a marked regular dispersion. Taking into account a non-infinitely small leaf size, whose effect is theoretically to shorten self-shading, had a minor effect on STAR computations. STAR values computed from the 3-D turbid medium were very sensitive to plant lacunarity, a parameter introduced in the context of fractal studies to characterize the distribution of gaps in porous media at different scales. This study shows that 3-D turbid medium models based on space discretization are able to give correct estimation of light interception by 3-D isolated trees, provided that the 3-D grid is properly defined, that is, discretization maximizes plant lacunarity
    corecore