211 research outputs found

    Rejection in Łukasiewicz's and Słupecki's Sense

    Get PDF
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz and developed by his student Słupecki, the pioneers of the method, which becomes relevant in modern approaches to logic

    The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane

    Get PDF
    Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell

    Influence of PNM-0.38PT Defect on Transmission of Multilayer Periodic Phononic Structure

    Get PDF
    In this work, the impact of the defect on the transmission of a mechanical wave in a periodic quasi-one-dimensional structure was investigated. The multilayer structure was made of PLA and air, while the defect layer was PNM-0.38PT with a significantly higher value of acoustic impedance in relation to the materials of the base structure. The influence of the position of the defect in the structure and its thickness was analysed. Transmission as a function of frequency was determined using the Transfer Matrix Method algorithm. The work showed the presence of band gaps in the analyzed structures. The influence of the symmetry of structures and substructures on the transmission of a mechanical wave was investigated. The influence of the number of layers with very low acoustic impedance (air) on the number of high transmission peaks with a small half-width was also demonstrated

    Mitigation of carbon using Atriplex nummularia revegetation

    Get PDF
    The use of abandoned or marginally productive land to mitigate greenhouse gas emissions may avoid competition with food and water production. Atriplex nummularia Lindl. is a perennial shrub commonly established for livestock forage on saline land, however, its potential for carbon mitigation has not been systematically evaluated. Similarly, although revegetation is an allowable activity to mitigate carbon within Article 3.4 of the United Nations Framework Convention on Climate Change's Kyoto Protocol, there is a paucity of information on rates of carbon mitigation in soils and biomass through this mechanism. For six sites where A. nummularia had been established across southern Australia four were used to assess changes in soil carbon storage and four were used to develop biomass carbon sequestration estimates. A generalised allometric equation for above and below ground biomass was developed, with a simple crown volume index explaining 81% of the variation in total biomass. There were no significant differences in soil organic carbon storage to 0.3 m or 2 m depth compared to existing agricultural land-use. Between 2.2 and 8.3 Mg C ha−1 or 0.2–0.6 Mg C ha−1 yr−1 was sequestered in above and below ground biomass and this translates to potential total sequestration of 1.1–3.6 Tg C yr−1 on saline land across Australia. Carbon income and forage grazing may thus provide a means to finance the stabilization of compromised land

    Influence of meta-atom geometry on the occurrence of local resonance regions in two-dimensional finite phononic structures

    Get PDF
    In this work, the influence of different cross-sections of meta-atoms and their distribution on the occurrence of local resonance regions in inter-meta-atomic spaces of finite phononic structures was investigated. Software based on the Mathematica package was designed and implemented using the finite difference algorithm in the time domain to simulate mechanical wave propagation in phononic structures. Then, for the recorded time series from the inter-meta-atomic spaces, resonant frequency distributions were determined using Fourier transforms, and an analysis of the differences in frequency distributions depending on the location of the inter-meta-atomic space was carried out.Web of Science144531230

    Mission and system architecture for an operational network of earth observation satellite nodes

    Get PDF
    Nowadays, constellations and distributed networks of satellites are emerging as clear development trends in the space system market to enable augmentation, enhancement, and possibilities of new applications for future Earth Observation (EO) missions. While the adoption of these satellite architectures is gaining momentum for the attaining of ever more stringent application requirements and stakeholder needs, the efforts to analyze their benefits and suitability, and to assess their impact for future programmes remains as an open challenge to the EO community. In this context, this paper presents the mission and system architecture conceived during the Horizon 2020 ONION project, a European Union research activity that proposes a systematic approach to the optimization of EO space infrastructures. In particular, ONION addressed the design of complementary assets that progressively supplement current programs and took part in the exploration of needs and implementation of architectures for the Copernicus Space Component for EO. Among several use cases considered, the ONION project focused on proposing system architectures to provide improved revisit time, data latency and image resolution for a demanding application scenario of interest: Marine Weather Forecast (MWF). A set of promising system architectures has been subject of a comprehensive assessment, based on mission analysis expertise and detailed simulation for evaluating several key parameters such as revisit time and data latency of each measurement of interest, on-board memory evolution and power budget of each satellite of the constellation, ground station contacts and inter-satellite links. The architectures are built with several heterogeneous satellite nodes distributed in different orbital planes. Each platform can embark different instrument sets, which provide the required measurements for each use case. A detailed mission analysis has then been performed to the selected architecture for the MWF use case, including a refined data flow analysis to optimize system resources; a refined power budget analysis; a delta-V and a fuel budget analysis considering all the possible phases of the mission. This includes from the correction of launcher injection errors and acquisition of nominal satellite position inside the constellation, orbit maintenance to control altitude, collision avoidance to avoid collision with space debris objects and end-of-life (EOL) disposal to comply with EOL guidelines. The relevance of the system architecture selected for the MWF has been evaluated for three use cases of interest (Arctic sea-ice monitoring, maritime fishery pressure and aquaculture, agricultural hydric stress) to show the versatility and the feasibility of the chosen architecture to be adapted for other EO applications.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687490

    Remodeling of Retinal Fatty Acids in an Animal Model of Diabetes: A Decrease in Long-Chain Polyunsaturated Fatty Acids Is Associated With a Decrease in Fatty Acid Elongases Elovl2 and Elovl4

    Get PDF
    OBJECTIVE: The results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort study revealed a strong association between dyslipidemia and the development of diabetic retinopathy. However, there are no experimental data on retinal fatty acid metabolism in diabetes. This study determined retinal-specific fatty acid metabolism in control and diabetic animals. RESEARCH DESIGN AND METHODS: Tissue gene and protein expression profiles were determined by quantitative RT-PCR and Western blot in control and streptozotocin-induced diabetic rats at 3-6 weeks of diabetes. Fatty acid profiles were assessed by reverse-phase high-performance liquid chromatography, and phospholipid analysis was performed by nano-electrospray ionization tandem mass spectrometry. RESULTS: We found a dramatic difference between retinal and liver elongase and desaturase profiles with high elongase and low desaturase gene expression in the retina compared with liver. Elovl4, an elongase expressed in the retina but not in the liver, showed the greatest expression level among retinal elongases, followed by Elovl2, Elovl1, and Elovl6. Importantly, early-stage diabetes induced a marked decrease in retinal expression levels of Elovl4, Elovl2, and Elovl6. Diabetes-induced downregulation of retinal elongases translated into a significant decrease in total retinal docosahexaenoic acid, as well as decreased incorporation of very-long-chain polyunsaturated fatty acids (PUFAs), particularly 32:6n3, into retinal phosphatidylcholine. This decrease in n3 PUFAs was coupled with inflammatory status in diabetic retina, reflected by an increase in gene expression of proinflammatory markers interleukin-6, vascular endothelial growth factor, and intercellular adhesion molecule-1. CONCLUSIONS: This is the first comprehensive study demonstrating diabetes-induced changes in retinal fatty acid metabolism. Normalization of retinal fatty acid levels by dietary means or/and modulating expression of elongases could represent a potential therapeutic target for diabetes-induced retinal inflammation

    A Systematic Guideline by the ASPN Workgroup on the Evidence, Education, and Treatment Algorithm for Painful Diabetic Neuropathy: SWEET

    Get PDF
    Dawood Sayed,1 Timothy Ray Deer,2 Jonathan M Hagedorn,3 Asim Sayed,4 Ryan S D’Souza,3 Christopher M Lam,1 Nasir Khatri,5 Zohra Hussaini,1 Scott G Pritzlaff,6 Newaj Mohammad Abdullah,7 Vinicius Tieppo Francio,1 Steven Michael Falowski,8 Yussr M Ibrahim,9 Mark N Malinowski,10 Ryan R Budwany,2 Natalie Holmes Strand,11 Kamil M Sochacki,12 Anuj Shah,13 Tyler M Dunn,11 Morad Nasseri,14 David W Lee,15 Leonardo Kapural,16 Marshall David Bedder,17,18 Erika A Petersen,19 Kasra Amirdelfan,20 Michael E Schatman,21,22 Jay Samuel Grider23 1Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; 2Pain Services, Spine and Nerve Center of the Virginias, Charleston, WV, USA; 3Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; 4Podiatry/Surgery, Susan B. Allen Memorial Hospital, El Dorado, KS, USA; 5Interventional Pain Medicine, Novant Spine Specialists, Charlotte, NC, USA; 6Department of Anesthesiology and Pain Medicine, University of California, Davis, Sacramento, CA, USA; 7Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA; 8Neurosurgery, Neurosurgical Associates of Lancaster, Lancaster, PA, USA; 9Pain Medicine, Northern Light Eastern Maine Medical Center, Bangor, ME, USA; 10OhioHealth Neurological Physicians, OhioHealth, Columbus, OH, USA; 11Anesthesiology and Pain Medicine, Mayo Clinic, Phoenix, AZ, USA; 12Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA; 13Department of Physical Medicine and Rehabilitation, Detroit Medical Center, Detroit, MI, USA; 14Interventional Pain Medicine / Neurology, Boomerang Healthcare, Walnut Creek, CA, USA; 15Pain Management Specialist, Fullerton Orthopedic, Fullerton, CA, USA; 16Carolinas Pain Institute, Winston Salem, NC, USA; 17Chief of Pain Medicine Service, Augusta VAMC, Augusta, GA, USA; 18Associate Professor and Director, Addiction Medicine Fellowship Program, Department Psychiatry and Health Behavior, Medical College of Georgia at Augusta University, Augusta, GA, USA; 19Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA; 20Director of Clinical Research, Boomerang Healthcare, Walnut Creek, CA, USA; 21Department of Anesthesiology, Perioperative Care & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA; 22Department of Population Health – Division of Medical Ethics, NYU Grossman School of Medicine, New York, NY, USA; 23Anesthesiology, Division of Pain Medicine, University of Kentucky College of Medicine, Lexington, KY, USACorrespondence: Dawood Sayed, Anesthesiology and Pain Medicine, the University of Kansas Medical Center, Kansas City, KS, USA, Tel +1 785-550-5800, Email [email protected]: Painful diabetic neuropathy (PDN) is a leading cause of pain and disability globally with a lack of consensus on the appropriate treatment of those suffering from this condition. Recent advancements in both pharmacotherapy and interventional approaches have broadened the treatment options for PDN. There exists a need for a comprehensive guideline for the safe and effective treatment of patients suffering from PDN.Objective: The SWEET Guideline was developed to provide clinicians with the most comprehensive guideline for the safe and appropriate treatment of patients suffering from PDN.Methods: The American Society of Pain and Neuroscience (ASPN) identified an educational need for a comprehensive clinical guideline to provide evidence-based recommendations for PDN. A multidisciplinary group of international experts developed the SWEET guideline. The world literature in English was searched using Medline, EMBASE, Cochrane CENTRAL, BioMed Central, Web of Science, Google Scholar, PubMed, Current Contents Connect, Meeting Abstracts, and Scopus to identify and compile the evidence for diabetic neuropathy pain treatments (per section as listed in the manuscript) for the treatment of pain. Manuscripts from 2000-present were included in the search process.Results: After a comprehensive review and analysis of the available evidence, the ASPN SWEET guideline was able to rate the literature and provide therapy grades for most available treatments for PDN utilizing the United States Preventive Services Task Force criteria.Conclusion: The ASPN SWEET Guideline represents the most comprehensive review of the available treatments for PDN and their appropriate and safe utilization.Keywords: diabetes, painful diabetic neuropathy, neuropathy, spinal cord stimulation, chronic pain, diabetic neuropath

    Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi

    Get PDF
    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users
    corecore