2,346 research outputs found

    Polarized quark distributions in nuclear matter

    Full text link
    We compute the polarized quark distribution function of a bound nucleon. The Chiral Quark-Soliton model provides the quark and antiquark substructure of the nucleon embedded in nuclear matter. Nuclear effects cause significant modifications to the polarized distributions including an enhancement of the axial coupling constant.Comment: 5 Pages, 2 Postscript figures, Version to be published in Phys. Rev.

    Chiral solitons in nuclei: Electromagnetic form factors

    Full text link
    We calculate the electromagnetic form factors of a bound proton. The Chiral Quark-Soliton model provides the quark and antiquark substructure of the proton, which is embedded in nuclear matter. This procedure yields significant modifications of the form factors in the nuclear environment. The sea quarks are almost completely unaffected, and serve to mitigate the valence quark effect. In particular, the ratio of the isoscalar electric to the isovector magnetic form factor decreases by 20% at Q^2=1 GeV^2 at nuclear density, and we do not see a strong enhancement of the magnetic moment.Comment: 13 pages, 6 figures, Added references and a clearer connection to experimen

    Antiproton Trapping for Advanced Space Propulsion Applications

    Get PDF
    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and graphs presented on the ATHENA experiment. Portable antiproton trap has been under development. The goal is to store and transport antiprotons from a production site, such as Fermilab near Chicago, to a distant site, such as Huntsville, AL, thus demonstrating the portability of antiprotons

    3D Micron-scale Imaging of the Cortical Bone Canal Network in Human Osteogenesis Imperfecta (OI)

    Get PDF
    Osteogenesis imperfecta (OI) is a genetic disorder leading to increased bone fragility. Recent work has shown that the hierarchical structure of bone plays an important role in determining its mechanical properties and resistance to fracture. The current study represents one of the first attempts to characterize the 3D structure and composition of cortical bone in OI at the micron-scale. A total of 26 pediatric bone fragments from 18 individuals were collected during autopsy (Nc=5) or routing orthopaedic procedures (NOI=13) and imaged by microtomography with a synchrotron light source (SRµCT) for several microstructural parameters including cortical porosity (Ca.V/TV), canal surface to tissue volume (Ca.S/TV), canal diameter (Ca.Dm), canal separation (Ca.Sp), canal connectivity density (Ca.ConnD), and volumetric tissue mineral density (TMD). Results indicated significant differences in all imaging parameters between pediatric controls and OI tissue, with OI bone showing drastically increased cortical porosity, canal diameter, and connectivity. Preliminary mechanical testing revealed a possible link between cortical porosity and strength. Together these results suggest that the pore network in OI contributes greatly to its reduced mechanical properties

    Creep Evaluation of (Orthotic) Cast Materials During Simulated Clubfoot Correction

    Get PDF
    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot that relies on weekly manipulations and cast applications. However, the material behavior of the cast in the Ponseti technique has not been investigated. The current study sought to characterize the ability of two standard casting materials to maintain the Ponseti corrected foot position by evaluating creep response. A dynamic cast testing device (DCTD) was built to simulate a typical pediatric clubfoot. Semi-rigid fiberglass and rigid fiberglass casting materials were applied to the device, and the rotational creep was measured at various constant torques. The movement was measured using a 3D motion capture system. A 2-way ANOVA was performed on the creep displacement data at a significance level of 0.05. Among cast materials, the rotational creep displacement was found to be significantly different (p-values ≪ 0.001). The most creep displacement occurs in the semi-rigid fiberglass (approximately 1.0 degrees), then the rigid fiberglass (approximately 0.4 degrees). There was no effect of torque magnitude on the creep displacement. All materials maintained the corrected position with minimal change in position over time
    corecore