
Marquette University
e-Publications@Marquette
Biomedical Engineering Faculty Research and
Publications Biomedical Engineering, Department of

1-1-2013

3D Micron-scale Imaging of the Cortical Bone
Canal Network in Human Osteogenesis
Imperfecta (OI)
John R. Jameson
Marquette University

Carolyne Albert
Marquette University, carolyne.albert@marquette.edu

Bjoern Busse
University Medical Center, Hamburg

Peter A. Smith
Marquette University

Gerald F. Harris
Marquette University, gerald.harris@marquette.edu

Published version. Published as part of Proceedings of SPIE 8672, Medical Imaging 2013: Biomedical
Applications in Molecular, Structural, and Functional Imaging. DOI. © 2013 Society of Photo-optical
Instrumentation Engineers (SPIE). Used with permission.

https://epublications.marquette.edu
https://epublications.marquette.edu/bioengin_fac
https://epublications.marquette.edu/bioengin_fac
https://epublications.marquette.edu/bioengin
http://dx.doi.org/10.1117/12.2007209


3D micron-scale imaging of the cortical bone canal network in human 

osteogenesis imperfecta (OI)  
 

John R. Jameson
a,b,c

, Carolyne I. Albert
b,c,d

, Bjoern Busse
e
, Peter A. Smith

c,d
, Gerald F. Harris

b,c,d 

 

a
Advanced Light Source, Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA, USA 

94720; 
b
Dept. of Biomedical Engineering, Marquette University, 1250 W. Wisconsin Ave., 

Milwaukee, WI, USA 53233; 
c
Orthopaedic & Rehabilitation Engineering Center (OREC), 

Marquette University, 735 N. 17
th

 St., ASF 105, Milwaukee, WI, USA 53233; 
d
Shriners Hospitals 

for Children, 2211 N. Oak Park Ave., Chicago, IL, USA 60707; 
e
Dept. of Osteology & 

Biomechanics, University Medical Center, Hamburg-Eppendorf, Lottestr. 59, D-22529 Hamburg, 

Germany 

ABSTRACT  

Osteogenesis imperfecta (OI) is a genetic disorder leading to increased bone fragility. Recent work has shown that the 

hierarchical structure of bone plays an important role in determining its mechanical properties and resistance to fracture. 

The current study represents one of the first attempts to characterize the 3D structure and composition of cortical bone in 

OI at the micron-scale. A total of 26 pediatric bone fragments from 18 individuals were collected during autopsy (Nc=5) 

or routing orthopaedic procedures (NOI=13) and imaged by microtomography with a synchrotron light source (SRµCT) 

for several microstructural parameters including cortical porosity (Ca.V/TV), canal surface to tissue volume (Ca.S/TV), 

canal diameter (Ca.Dm), canal separation (Ca.Sp), canal connectivity density (Ca.ConnD), and volumetric tissue mineral 

density (TMD). Results indicated significant differences in all imaging parameters between pediatric controls and OI 

tissue, with OI bone showing drastically increased cortical porosity, canal diameter, and connectivity. Preliminary 

mechanical testing revealed a possible link between cortical porosity and strength. Together these results suggest that the 

pore network in OI contributes greatly to its reduced mechanical properties. 

Keywords: Osteogenesis imperfecta, brittle bone disease, micro-computed tomography, synchrotron, cortical porosity, 

bone microstructure, strength, pediatric bone 

 

1. INTRODUCTION  

Osteogenesis imperfecta (OI), or brittle bone disease, is the most common genetic bone disorder, affecting 

approximately 1:10,000 persons.
1
 OI is generally characterized by mutations that lead to reduced quantity and/or quality 

of type I collagen and its associated structural proteins. Collagen is an important organic constituent of many organ 

systems throughout the body, and it is the most ubiquitous protein in animals.
2
 As a result, symptoms in OI vary widely 

but can include a host of problems including brittle bones, spine deformities,
3
 impaired lung function,

3
 and heart valve 

abnormalities,
4
 among others. Because of this heterogeneity, patients are generally classified into one of a growing 

number of clinical groups (Table 1). However, in practice it is difficult to distinguish between types VI-VIII in children 

on the basis of clinical or radiological features. Of the remaining groups, types I, IV, and III are the most commonly 

studied, and these three types provide a good framework for comparing characteristics of mild, moderate, and severe OI, 

respectively.  

 

Until recently, the prevailing paradigm for assessing bone strength has been that changes in the loading environment 

affect bone remodeling and mineralization, which in turn directly influence mechanical properties.
5
 However, bone is a 

composite of flexible collagen and brittle hydroxyapatite mineral, and as such its properties depend not only on the 

composition but also on the structure or organization of the tissue. Cortical bone has a highly complex, hierarchical 

structure (Figure 1) that is often difficult or impractical to assess in patients because the resolution of in vivo imaging 



 

 
 

 

techniques is limited. The radiation dose of X-ray based methods is also of particular concern in pediatric OI patients, 

who routinely undergo X-rays for fractures and surgical planning.  

 
Table 1. Clinical classification of OI patients (Adapted from Van Dijk, et al6). *Denotes types included in the current study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hierarchical structure of cortical bone (with associated length scales). 

 

The emergence of ex vivo imaging techniques such as micro-computed tomography (µCT) for biomedical applications 

has made it possible to explore small structures (e.g., osteons, osteocyte lacunae, vasculature, etc.) in the interior of bone 

at a vastly improved level of resolution. Continuous advances in computational power have enabled complex analysis of 

bone porosity using direct 3D measurements that do not rely on stereological or material distribution assumptions.  

Although the availability of synchrotron user facilities is low (and the demand for beamtime high), these systems 

provide an ideal tool for visualizing the micron-scale characteristics of bone.
7 

The vast majority of fractures in OI occur 

in the long bones of the arms and legs (i.e., femur, tibia, humerus, radius). The purpose of this study was therefore to 

characterize porosity and composition in small, clinically relevant fragments from the mid-diaphysis of long bones. A 

secondary aim was to explore possible relationships between OI bone structure, mineralization, and strength. 

Clinical type Severity Affected gene (and associated protein) 

I* Mild (non-deforming) COL1A1/2 (type I collagen) 

II Lethal (perinatal) COL1A1/2 (type I collagen) 

III* Severe COL1A1/2 (type I collagen) 

IV* Moderate COL1A1/2 (type I collagen) 

V Moderate Unknown 

VI Moderate/severe Unknown 

VII Moderate CRTAP (cartilage associated protein) 

VIII Severe/lethal LEPRE1 (leucine proline-enriched proteoglycan) 



 

 
 

 

2. METHODS 

2.1 Study population 

Pediatric patients with OI often require corrective surgeries and osteotomies that yield small bone fragments, which 

would normally be discarded post-operatively or saved for histological analysis. After obtaining written consent/assent 

and IRB approval (Rush University Medical Center #10101309 and Marquette University #HR-2176), we collected 21 

such fragments from the femur, tibia, and humerus of 13 children with OI. We also collected 5 specimens from pediatric 

controls due to autopsy (LBL BUA#205). Table 2 summarizes relevant donor information. All specimens were stored 

fresh-frozen until just prior to testing. 

 
Table 2. Study population. *Note: N=total number of donors, n=total number of specimens. 

 Control (Nc=5, n=5) OI (NOI=13, n=21) 

Phenotype All healthy  

(no known musculoskeletal disease) 

Mild (type I): n=4 

Moderate (type IV): n=5 

Severe (type III): n=12 

Age, years [interquartile range] 7 [3-11] 10 [8-12] 

Gender All female Male: n=10 

Female: n=11 

Anatomical location All femur Femur: n=8 

Tibia: n=11 

Humerus: n=2 

 
2.2 Synchrotron radiation µCT (SRµCT) imaging 

All bone fragments were imaged (continuous mode, 1025 projections, 180° rotation) on the tomography beamline at the 

Advanced Light Source (BL 8.3.2, Berkeley, CA) using a monochromatic X-ray energy of 17 keV. To reduce phase 

contrast effects and improve resolution, we used the beamline’s newly commissioned Optique Peter X-ray microscope 

(Lentilly, France), which allows for closer (i.e., <5mm) scintillator-to-objective distances. This system, along with the 

other relevant beamline hardware and software, has been described previously.
8
 A combination of the 4x and 10x 

objective lenses was used, with resulting nominal pixel sizes of 1.7 µm and 0.6 µm, respectively. After flat field 

correction, subsequent reconstructions were performed using a filtered back projection algorithm in Octopus commercial 

software (Octopus 8.6, inCT, Ghent, Belgium) to generate scaled, 16-bit TIF stacks. The linear scaling equation was 

embedded in the header file so that floating point gray values could be recovered for composition measurements. 

 

2.3 K2HPO4 tissue phantom 

Hydroxyapatite (HA) solutions have commonly been used as tissue phantoms to create calibration curves relating the 

reconstructed gray values (which represent the linear attenuation coefficient, µ, of a material) to known mineral 

concentrations.
12

 However, the resolution of SRµCT is fine enough to detect small inhomogeneities in these solutions, 

and recent work has shown that dipotassium hydrogen phosphate (K2HPO4) solutions provide better results.
13

 A stock 

solution of K2HPO4 was therefore prepared in nanopure water and diluted to create the following concentrations (g 

K2HPO4/cm
3
): 0, 200, 400, 800, 1000. A small amount of each solution was placed in thin-walled glass capillary tubes 

(SiO2, t=0.5 mm) and imaged in a similar manner to above. The resulting calibration curve is shown in Figure 2. 



 

 
 

 

 

Figure 2. Bone phantom calibration curve. Each data point corresponds to the image above. 

 

 
2.4 Microstructural and composition measurements 

All reconstructed data sets were analyzed and visualized using the open-source software suite Fiji, a distribution of 

ImageJ.
14

 Regions of interest (ROIs) were selected along a 1-mm section of each image stack. After filtering each ROI 

using a 3D bilateral filtering algorithm,
9
 segmentation was performed using the built-in iterative IsoData thresholding 

algorithm
10

 on the stack histogram. The pore structure was separated into canals and osteocyte lacunae using the Particle 

Analyser algorithm in Fiji. 

 

Microstructural parameters were then measured using BoneJ,
11

 a set of customizable plugins for Fiji. Table 3 shows a list 

of all parameters calculated, along with physical descriptions for each parameter. 3D methods for calculating canal 

diameter (Ca.Dm) and canal separation (Ca.Sp) were based on maximum inscribed sphere algorithms; consequently, 

processing time was highly dependent on the size of the image features. To maximize computational efficiency, we 

downsampled each ROI prior to performing these measurements. 

 

Compositional measurements require accurate, quantitative analysis of image gray values. Therefore we converted the 

images back to their floating point values and segmented in a similar manner to above. Each ROI was then analyzed to 

determine the average gray value of all voxels that had been segmented as bone. Using the calibration curve generated 

from the different concentrations of the K2HPO4 bone phantom (Figure 2), this average gray value was converted to a 

volumetric tissue mineral density (TMD, in g/cm
3
). 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 
Table 3. Summary of cortical bone microstructural parameters. 

 

Microstructural parameter Units Description 

Cortical porosity, Ca.V/TV % Volume of all haversian and Volkmann’s canals, including any 

additional void space (excluding osteocyte lacunae and 

canaliculi), divided by the total ROI volume 

Canal surface to tissue volume, Ca.S/TV mm
-1 

Total surface area of the pore network (calculated using a 

marching cubes algorithm) divided by the total ROI volume 

Canal diameter, Ca.Dm µm Average diameter of all voids (calculated using a maximum 

inscribed sphere algorithm) 

Canal separation, Ca.Sp µm Average distance between voids (calculated using a maximum 

inscribed sphere algorithm) 

Canal connectivity density, Ca.ConnD mm
-3

 Number of connected structures in the pore network (calculated 

using the Euler characteristic) divided by the total ROI volume 

 

2.5 Pilot mechanical testing 

To determine whether porosity is an important factor affecting bone strength, we tested a subset of the specimens to 

failure in either three-point bending or tension. A total of 10 beams were machined, 5 each from control and severe (type 

III) OI, using a low-speed diamond saw under constant water irrigation. Beams were machined such that the direction of 

osteons was aligned parallel to the long axis of the beam. OI beams were tested to failure using a customized 3-point 

bending jig attached to a materials testing frame (Instron, Model 3345, Norwood, MA),
15

 while control beams were 

tested using a custom-made tensile rig (Omega, LC703-10).
16

 The two groups were tested under different loading 

conditions because they were to be included in other related work. To ensure physiologically relevant strength results, all 

beams remained hydrated throughout testing. The resulting load versus displacement curves were normalized to create 

stress versus strain curves, where the strength was defined as the maximum stress achieved before failure. 

 

2.6 Statistics 

For the microstructural and compositional imaging data, the OI specimens were pooled and compared to the control 

population using a Mann Whitney U test with a significance level of 0.05. Linear correlations were also calculated to 

investigate possible relationships between the microstructural, compositional, and strength results. 

 

3. RESULTS 

3.1 Microstructural & compositional results 

OI bone displayed statistically significant (p<0.05) differences across all microstructural measurements (Table 4). There 

was an increase in cortical porosity (7x), canal surface to tissue volume (2x), canal diameter (3x), and canal connectivity 

density (8x) for the OI bone compared to controls. The range of values for each parameter was much higher in OI bone 

compared to controls, indicating a high degree of heterogeneity in the pore network. There were no obvious trends 

between the different types of OI bone. The volume renderings in Video 1 show representative pore networks for each 

experimental group. Although there does appear to be a consistent orientation of pores parallel to the direction of 

osteons, the OI network shows higher variability and generally appears more isotropic than controls. There was no 

apparent correlation between cortical porosity and tissue mineral density in the OI group. There was, however, a strong 

negative correlation (R
2
=0.92) between these two parameters in pediatric controls. 

 



 

 
 

 

Table 4. Microstructural & compositional results summary. All values listed as median [interquartile range]. *Denotes p<0.05 

between pediatric controls and OI (pooled). 

 
Parameter Pediatric 

controls 

OI 

(pooled) 

Mild OI  

(type I) 

Moderate OI 

(type IV) 

Severe OI 

(type III) 

Cortical porosity, Ca.V/TV (%) 3.3 

[3.0-3.4] 

21.1* 

[14.4-23.4] 

22.9 

[19.0-26.3] 

14.4 

[13.5-23.4] 

19.7 

[15.8-22.7] 

Canal surface to tissue volume, 

Ca.S/TV (mm
-1

) 

3.0 

[2.8-3.1] 

6.2* 

[5.4-8.2] 

7.7 

[6.2-9.3] 

5.5 

[4.0-7.3] 

6.1 

[5.6-8.3] 

Canal diameter, Ca.Dm (µm) 41 

[29-42] 

126* 

[102-137] 

107 

[101-116] 

130 

[101-133] 

131 

[119-149] 

Canal separation, Ca.Sp (µm) 195 

[177-197] 

253* 

[215-333] 

175 

[148-338] 

335 

[301-435] 

249 

[219-311] 

Canal connectivity density, 

Ca.ConnD (mm
-3

) 

8.5 

[2.5-14.9] 

67.7* 

[39.7-126.5] 

151.9 

[87.3-252.3] 

61.2 

[20.0-101.6] 

67.7 

[50.5-97.9] 

Tissue mineral density, TMD 

(g/cm
3
) 

3.6 

[3.6-3.7] 

2.5* 

[2.4-2.7] 

2.8 

[2.7-2.9] 

2.3 

[2.3-2.4] 

2.5 

[2.4-2.6] 

 

 

Video 1. Comparison of cortical bone pore network (red=pores, yellow=osteocyte lacunae). A: Pediatric controls; B: Mild (type 

I) OI; C: Moderate (type IV) OI; D: Severe (type III) OI. *Note: Osteocyte lacunae shown for reference but not included in 

porosity calculations. For colorized video, see online version of paper: http://dx.doi.org/doi.number.goes.here 

A. 
B. 

C. D. 

http://dx.doi.org/doi.number.goes.here


 

 
 

 

3.2 Preliminary mechanical results 

Initial results from bending tests indicated a correlation between cortical porosity and flexural strength in severe OI bone 

(Figure 3). There was no apparent correlation between these parameters in the control group. Median strength values for 

the control and OI groups tested in tension and bending, respectively, were 94 MPa and 76 MPa. However, since these 

groups were tested under different experimental conditions, they should not be compared directly. 

 

 

Figure 3. Correlation between cortical porosity and strength in severe OI. 

4. DISCUSSION/CONCLUSIONS 

Although bone structure is an important determinant of mechanical properties, to date there is very little data examining 

this topic in the OI literature. Several histological studies have reported on the cortical wall thickness at the iliac crest.
17-

19
 The most extensive of these analyzed 70 pediatric biopsies from mild, moderate, and severe OI patients, finding 

marked cortical thinning across all types.
19

 It is unclear how well these measurements translate to other skeletal sites 

such as the long bones, which are the most common fracture locations (and thus the most clinically relevant regions in 

assessing fracture risk) in OI patients. One recent study used high-resolution peripheral quantitative computed 

tomography (HR-pQCT) to analyze bone composition and structure in vivo at the ultradistal radius and ultradistal tibia in 

adult patients with mild (type I) OI.
20

 The study reported decreases in OI volumetric bone mineral density and several 

trabecular parameters; however, the resolution was too low (≈80 µm) to analyze the entire canal network. Alternatively, 

SRµCT is well-suited for capturing the 3D, micron-scale properties of the bone tissue and canal network.
7
 This is 

significant because recent work on the effects of aging has shown that microstructural features such as haversian canals 

play an important role in resisting fracture.
21

 The purpose of the current study was to characterize the cortical bone pore 

network in mild (type I), moderate (type IV), and severe (III) OI, as well as to compare these groups to a pediatric 

control population. 

 

We observed drastic increases in porosity, canal diameter, and canal connectivity across all OI types. Whereas bone 

tissue from the control group displayed a highly oriented canal network, OI bone was much more heterogeneous, with 

large fluctuations in canal diameter and organization. These characteristics should impair bone strength, as large, 

connected pores offer little resistance to crack propagation. Indeed, preliminary mechanical property data reflected this 

relationship with structure, as there appeared to be a negative correlation between cortical porosity and strength in severe 

OI bone. These results warrant an expanded study to investigate the relative importance of porosity in determining 

strength. 

 

The effect of OI severity was not readily noticeable in our analysis, as both microstructural and compositional measures 

were similar between the three groups. Although not statistically significant, the fact that mild (type I) OI bone showed 

the highest cortical porosity of the three groups is surprising. A total of 11 of the 13 OI donors (including all of the type I 

donors) in this study had been treated with bisphosphonates, which alter mineral metabolism by reducing the activity of 

bone-resorbing osteoclasts. Differences in the dosage and frequency of drug administration could help explain some of 

R² = 0.5419 
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the pore network variability between the OI groups. A recent nanoindentation study revealed that tissue level elastic 

modulus (a measure of material stiffness) was approximately 7% higher in mild (type I) versus moderate and severe 

OI.
22

 These findings suggest that there may be material level adaptations in mild OI bone that allow it to be stronger than 

the other types despite higher porosity. To investigate this possibility, future work is needed combining detailed drug 

history information with pore network analysis, as well as local mineralization and materials testing. 

 

Overall compositional results were mixed, as we found a strong inverse correlation between cortical porosity and 

volumetric tissue mineral density in the control group, but not in OI. This observation is interesting because previous 

studies have shown a correlation between mineral measurements and bone volume fraction (BV/TV, a corollary to 

cortical porosity) in trabecular OI bone.
23

 Bone turnover is elevated in OI
19

, and in general turnover is higher in 

trabecular versus cortical bone.
24

 Together these findings point to fundamental differences in bone modeling/remodeling 

between these two types of bone. 

  

Because it is often difficult to obtain and test human OI bone specimens, mouse models have become a useful surrogate 

for understanding the disease and evaluating potential treatment therapies. A recent pilot study on the oim model of 

severe OI found an increase in the number of canals and osteocyte lacunae in diseased mice versus controls.
25 

The 

researchers suggested that the increase in the number of pores in oim bone may help explain the reduced fracture 

resistance of this tissue. In contrast with our results, the study did not observe increased canal size or cortical porosity in 

diseased bone. There are fundamental differences between the microstructure of murine versus human bone that could 

explain this phenomenon (e.g., murine cortical bone does not contain osteons). In light of our current findings, a more 

detailed study on oim bone is warranted to determine whether there are common characteristics in the pore network 

between these species. 

 

In summary, this study presents some of the first data on the 3D characteristics of the cortical bone pore network in mild, 

moderate, and severe OI. We report significant increases in cortical porosity, canal diameter, and canal connectivity in 

OI bone compared to a pediatric control group. Preliminary mechanical studies indicate a possible correlation between 

cortical porosity and mechanical strength in OI bone. Future studies focusing on pore architectural characteristics such as 

canal orientation, canal branching, and degree of anisotropy will shed further light on the effect of bone microstructure 

on mechanical properties. Together this information will be valuable in understanding the cause of bone fragility in OI, 

as well as in developing and evaluating new treatment strategies. 
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