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Abstract: The Ponseti method is a widely accepted and highly successful conservative treatment of 
pediatric clubfoot that relies on weekly manipulations and cast applications. However, the material 
behavior of the cast in the Ponseti technique has not been investigated. The current study sought to 
characterize the ability of two standard casting materials to maintain the Ponseti corrected foot position 
by evaluating creep response. A dynamic cast testing device (DCTD) was built to simulate a typical 
pediatric clubfoot. Semi-rigid fiberglass and rigid fiberglass casting materials were applied to the device, 
and the rotational creep was measured at various constant torques. The movement was measured using 
a 3D motion capture system. A 2-way ANOVA was performed on the creep displacement data at a 
significance level of 0.05. Among cast materials, the rotational creep displacement was found to be 
significantly different (p-values ≪ 0.001). The most creep displacement occurs in the semi-rigid 
fiberglass (approximately 1.0 degrees), then the rigid fiberglass (approximately 0.4 degrees). There was 
no effect of torque magnitude on the creep displacement. All materials maintained the corrected 
position with minimal change in position over time. 
 

SECTION I. 

Introduction 

Idiopathic clubfoot is a congenital deformity of the lower extremity, with a 
prevalence of 1 to 6 in 1000 births.1,2 The Ponseti method is a mainstay conservative 
clubfoot treatment that relies on manipulation and casting of the foot done weekly.1,2,3,4,5 
Casting with plaster-of-Paris has been the historical standard for clubfoot immobilization 
since it was introduced by Guerin.1,4,6 Traditionally, plaster-of-Paris has been long praised 
for its moldability and patient comfort for serial casting purposes. On the other hand, it can 
be heavy, takes a long time to dry completely, and requires soaking for several hours or a 
cast saw to remove it, risking skin injury. Alternative cast materials have been introduced 
for use in clubfoot treatment, including rigid (RF) and semi-rigid fiberglass (SRF). Results 
from previous clinical studies have indicated the potential success of the Ponseti method 
with the use of materials other than plaster-of-Paris.6,7,8,9 Material selection could affect not 
only the comfort level of the patient but also the efficacy of the technique. 

Over the last few decades, studies have been conducted to determine mechanical 
properties of different cast materials, as well as to identify the advantages of using one 
material over another.8,10,11,12,13,14 A variety of metrics have been investigated to define 
material properties, such as stiffness, ultimate strength, and yield strength, or the point at 
which the material will begin to plastically deform, based on tests performed in 
compression, tension, and bending. One limitation of these studies is that these tests are 
based on models that do not adequately represent the clinical application. Corrective casts 
used with the Ponseti method are applied across a joint and are subjected to complex loads 
exceeding simple compression. Nor do these previous models account for the permanent 
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cast deformation that occurs under prolonged low level loading conditions, or creep. An 
improved model is required to better simulate the clinical application and to address the 
mechanical behavior of the limb-cast composite.8 

The objectives addressed in this study are 1) to characterize the ability of SRF and 
RF casting materials to maintain the Ponseti corrected foot position and 2) to determine 
the sensitivity of the casts to creep under corrective joint load conditions. In the current 
study, creep displacement is evaluated through application of an experimental foot model 
tested with the casting materials at two constant torque conditions. 

SECTION II. 

Methods 

A. Device Design 

A dynamic cast testing device (DCTD) was built to simulate pediatric clubfoot 
correction with casting. A single axis of correction was evaluated in order to isolate the cast 
creep characteristics. The anatomic segments were constructed from 1 inch Schedule 40 
PVC piping. The axis of correction consisted of a stainless steel hinge (1/4 - inch diameter 
pin, 3–11/32 inch leaf length) that allowed the distal (foot) segment to rotate about an axis 
parallel to the proximal (shank) segment. Knee and thigh segments made from PVC piping 
were also attached to the shank segment in order to simulate a long leg cast. The DCTD was 
anchored to a fixed platform. 

B. Torque Acquisition 

A constant torque (low or high) was applied to the DCTD through a weighted cable. 
The torque values were determined with the use of the Ponseti teaching model (MD 
Orthopaedics; Wayland, IA). Two experienced orthopaedic surgeons applied a corrective 
torque sufficient to abduct the foot to neutral. A spring scale was connected to the model 
and the Ponseti technique was applied by each surgeon. A total of seven correction trials 
were performed. The resulting torque was 0.62 Nm ± 0.12 Nm. The minimum and 
maximum applied corrective torques, 0.44 Nm and 0.75 nm, were used in the subsequent 
creep evaluation test. 
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C. Creep Test Protocol 

Vendor instructions were followed during application of the two cast materials: 
rigid fiberglass (3M™, Parsippany, NJ), and semi-rigid fiberglass (3M™, Parsippany, NJ). A 
protective latex sleeve was located about the hinge joint. The device was held in neutral 
alignment with a fixture during the cast set-up and setting time. A single layer of cast 
padding (3M™, Parsippany, NJ) was wrapped around the device with 50% overlap. 

The DCTD was casted with the materials according to vendor specifications. The RF 
and SRF were dipped in room temperature water and applied without wringing. Time was 
marked at the initiation of casting to monitor the setting time and data acquisition 
intervals. The wet roll was then applied to the DCTD. Four layers of material were wound 
around the device, with 50% overlap and along the same length as the padding. Molding 
and contouring was performed to ensure a proper fit and adhesion. 

The positions of two triads of 7-mm diameter IRED (Infra-Red-light-Emitting-
Diode) markers, placed at each end of the device (Fig. 1), were monitored by Optotrak 
System cameras (Northern Digital, Inc.) during testing. Five trials were completed per cast 
material for each torque for a total of 20 trials in the study. Data acquisition began four 
minutes after the start of cast application. Three 10-minute intervals of time were recorded 
at a 1 Hz sampling frequency. Interval 1 was recorded from minutes 4 to 14. Interval 2 was 
recorded from minutes 18 to 28. Interval 3 was recorded from minutes 60 to 70.  

 
Figure 1: Dynamic Cast Testing Device (DCTD). 
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Coordinate systems for the foot and shank-thigh segments were calculated with the 
z-axis pointed inferiorly, aligned with the hinge axis, the y-axis pointed laterally, and the x-
axis pointed anteriorly (Fig. 1). 

D. Mathematical and Statistical Analysis 

The motion data from each trial were analyzed in Matlab to compute segment 
translation and rotation throughout testing. The Euler angle sequence, Z-Y-X, was used to 
describe the relative rotation of the distal (foot) segment to the proximal (shank-thigh) 
segment. Angular creep displacement, 𝛥𝛥𝛥𝛥(𝑡𝑡), was calculated as:  

Δ𝛥𝛥(t) = 𝛥𝛥(t) − 𝛥𝛥0, (1)  

where t is time in seconds, θ(t) is the angle in degrees at time t, and 𝛥𝛥0  is the initial angle in 
degrees recorded at 𝑡𝑡0. This measurement was calculated for the total trial length and per 
interval. Percent of total rotation was also determined for each interval. The average creep 
and standard deviation for the five trials in each condition were computed. A Shapiro-Wilk 
test performed on the data concluded normal distribution; then the data was evaluated 
using a two-way ANOVA for the factors cast material and torque. Significance was defined 
as p<0.05. 

Curve fitting was performed on the averaged creep displacement data using a least 
absolute residuals formulation. Observed and predicted values were calculated from the 
best-fit model at times of 20 minutes, 72 hours, and 7 days to conform to clinical standards. 

SECTION III. 

Results 

The resultant translational displacement of the system was calculated to be less 
than 0.05 mm for each of the cast materials under either torque. Rotational creep 
displacement about the axis of the hinge (z-axis) is illustrated in Fig. 2 and corresponds 
with forefoot adduction.  
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Figure 2: Average and standard deviation of creep displacement for SRF and RF under A) low and B) 
high torques. Interval 1: 4–14 minutes; Interval 2: 18–28 minutes; Interval 3: 60–70 minutes. 

The average creep displacement was calculated for the entire trial length, as well as 
per interval. The results can be seen in table 1. The greatest amount of creep was produced 
when using POP. The first ten minute interval of testing experienced the most creep, 
accruing over 65% of the total creep. Material type was found to significantly affect the 
total creep (p<<0.001), while the effect of torque was determined to be negligible 
(p>0.05). This result was also seen when examining the creep displacement occurring at 
the end of time interval 1 (p=0.01).  

TABLE I Average Creep Displacement 
 

Semi-Rigid Fiberglass Rigid Fiberglass 
 

Low Torque High Torque Low Torque High Torque 

Interval 1 Creep (deg)† 0.6 0.6 0.2 0.4 
 

±0.2 ±0.2 ±0.1 ±0.2 

Total Creep (deg)* 0.9 0.8 0.3 0.5 
 

± 0.3 ± 0.3 ± 0.2 ± 0.2 

Mathematical models of the creep behavior of each cast material are presented in Fig. 3. 
The response of all three cast materials were best described using a power equation with 
two terms,  

𝐶𝐶(𝑡𝑡) = 𝑎𝑎 × 𝑡𝑡𝑏𝑏 + 𝑑𝑑, (2)  
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where C(t) is the curve-fit creep displacement response, t is the time (in seconds), and a, b, 
and d  are coefficients. Predicted creep displacement values are presented in table 2. From 
the first 20 minutes of drying and 7days, the SRF displacement increases by 93% and 82%, 
under low and high torques, respectively, while the RF displacement increases by 83% and 
35%, under low and high torques, respectively. Increases of 10% and 7.5% for the low and 
high torque trials of SRF, and increases of 8.3% and 1.5% for the low and high torque trials 
of RF, are seen between 72 hours and 7 days.  
 

 
Figure 3: Data and curve-fits of average rotational creep displacement of SRF and RF under A) low 
torque and B) high torque. 
 
SECTION IV. 

Discussion 

The results presented in this study represent the creep displacement experienced 
by 2 cast materials under constant torques, based on clinical conditions of clubfoot 
correction. The study resulted in small amounts of creep for both cast materials, with a 
maximum of only 1 degree. The findings indicate that more creep displacement is 
experienced by the semi-rigid fiberglass (SRF) than the rigid fiberglass (RF), regardless of 
the torque level. Relevant outcomes of this experiment include the creep displacement 
dependence on cast material and independence from torque. Clinically, this would indicate 
that severity of deformity will not affect the creep of the cast material. 
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This experiment models the rotational displacement response and the findings do 
correspond with those of studies investigating cast rigidity and compliance. For example, 
the results of this study agree with those of pressure-volume and skin pressure studies 
conducted by Deshpande et al. and Davids et al., as those studies showed that SRF was 
more compliant than RF.10,11 In addition, their findings suggest that RF most rigid of all cast 
materials tested they tested Results in these studies were determined by gauging the 
pressure change when infusing measured volumes of fluid into bladders that surrounded 
by cast material. Discrepancies with other studies' results could be attributed to the 
complex combination of motion, padding, and/or multilayering effect that were based on 
the standard clinical procedure (Ponseti method) that was applied. 

In addition, many of the studies examining mechanical properties of these cast 
materials looked at the material properties after the recommended curing time for weight 
bearing and at higher loads. As a result, their conclusions are of the ultimate and yield 
behaviors of the materials at a specific water content percentage. In the current study, an 
internal torque, applicable to joint stiffness, supplied the driving force on the cast after the 
recommended setting time, which is clinically relevant to the conservative clubfoot 
treatment procedure. The forces being applied to the cast during treatment are 
significantly lower than those seen during yield, as defined by the definition of the creep 
phenomena.  

TABLE II Predicted Creep Displacement 
 Semi-Rigid Fiberglass Rigid Fiberglass 

 Low Torque High Torque Low Torque High Torque 
20 minutes 0.64 0.63 0.26 0.47 

72 hours 1.59 1.41 0.58 0.66 

7 days 1.76 1.52 0.63 0.67 

Furthermore, this study shows the behavior of the material as it undergoes water 
content changes. Berman et al. found that water content had a minimal effect on the 
strength of synthetic cast as it had reached 75% of its 5 day strength after a curing time of 1 
hour.12 In the current study, the creep displacement models predict that about 50% of the 7 
day displacement for the SRF under either load, about 50% of it for the RF under low 
torque and about 75% of it for the RF under the high torque is reached at 1 hour. In 
addition, the creep may plateau as the torque produced by the joint tissues relaxes over 
this time period. 
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A preliminary analysis of the creep strain (creep displacement (Δθ(t)) divided by 
initial angle (𝛥𝛥0)) showed diverging strain vs. time curves for the rigid fiberglass. A 
preliminary inspection of the creep compliance (strain at time t divided by the stress 
applied) showed two distinct creep compliance vs. time curves, indicating nonlinearity. 
This analysis will be continued for both cast materials in future work. 

Studies examining the use of different orthopaedic casting materials have resulted 
in unclear conclusions as to which material is best for clubfoot treatment based on patient 
satisfaction and efficacy.8 Zmurko et al. found that even though his tests showed that SRF 
was best used with non-rigid immobilization from three-point bending and diametrical 
compression tests, one of the authors had been using this material in the correction of 
clubfoot and metatarsus adductus and found it to be sufficiently rigid for the procedure. 
Pittner et al. found that in clinical trials, the clubfeet corrected with either plaster of Paris 
or SRF both resulted in a 95% overall correction rate with the addition of percutaneous 
tendoachilles lengthening. However, those feet treated with SRF casts had statistically 
significant lower Dimeglio-Bensahel scores at the completion of non-operative 
manipulation. Patient satisfaction in terms of convenience, cast weight, and cast durability 
was higher for the semi-rigid fiberglass. In a study comparing parent satisfaction with 
plaster of Paris and SRF used during serial casting, Coss et al. found that parents preferred 
the SRF based on its ease of removal, durability, and performance.9 In their study though, 
the authors did not correlate each cast material in regard to their efficacy. Similarly, 
Brewster et al.7 using SRF and Kin-Wah Ng et al.15 using fiberglass material, published their 
favorable clinical results. 

Some limitations are present in this examination. This study models rigid bodies 
that are connected by a single, revolute hinge joint. While the ankle-subtalar complex is not 
a simple revolute joint, the model represents the second, most prominent phase of clubfoot 
correction by addressing the transverse plane adduction. In addition, the cast materials' 
responses to the simulated joint stiffness may be a function of the number of layers used in 
the construction of the cast. The effectiveness of the cast material may depend on the 
surgeon`s molding skill. The moldability of the cast material and its significance on the 
ability to apply the cast material and its influence on the efficacy of clubfoot treatment is 
not addressed in this model. To date, there have been no studies that specifically address 
moldability. 

In future work, we plan to investigate further the viscoelastic linearity of these 
materials, as well as analyze and compare the behavior of plaster of Paris. In addition, the 
tissue mechanics of the clubfoot ankle ligaments will be explored to assess the mechanical 
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response to treatment. A better understanding of the mechanics of clubfoot correction will 
aid in future innovations of clubfoot care. 
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