75 research outputs found

    Bekenstein bound from the Pauli principle

    Full text link
    Assuming that the degrees of freedom of a black hole are finite in number and of fermionic nature, we naturally obtain, within a second-quantized toy model of the evaporation, that the Bekenstein bound is a consequence of the Pauli exclusion principle for these fundamental degrees of freedom. We show that entanglement, Bekenstein and thermodynamic entropies of the black hole all stem from the same approach, based on the entropy operator whose structure is the one typical of Takahashi and Umezawa's Thermofield Dynamics. We then evaluate the von Neumann black hole--environment entropy and noticeably obtain a Page-like evolution. We finally show that this is a consequence of a duality between our model and a quantum dissipative-like fermionic system.Comment: In memory of Martin Scholtz (1984-2019). 10 pages, 3 figures. Matches published versio

    Quantum Groups and Polymer Quantum Mechanics

    Full text link
    In Polymer Quantum Mechanics, a quantization scheme that naturally emerges from Loop Quantum Gravity, position and momentum operators cannot be both well-defined on the Hilbert space ( H_Poly ). It is henceforth deemed impossible to define standard creation and annihilation operators. In this letter we show that a q-oscillator structure, and hence q-deformed creation/annihilation operators, can be naturally defined on H_Poly , which is then mapped into the sum of many copies of the q-oscillator Hilbert space. This shows that the q-calculus is a natural calculus for Polymer Quantum Mechanics. Moreover, we show that the inequivalence of different superselected sectors of H Poly is of topological nature

    The characterization of Thermotoga maritima Arginine Binding Protein variants demonstrates that minimal local strains have an important impact on protein stability

    Get PDF
    The Ramachandran plot is a versatile and valuable tool that provides fundamental information for protein structure determination, prediction, and validation. The structural/thermodynamic effects produced by forcing a residue to adopt a conformation predicted to be forbidden were here explored using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model. Specifically, we mutated TmArgBP Gly52 that assumes a conformation believed to be strictly disallowed for non-Gly residues. Surprisingly, the crystallographic characterization of Gly52Ala TmArgBP indicates that the structural context forces the residue to adopt a non-canonical conformation never observed in any of the high-medium resolution PDB structures. Interestingly, the inspection of this high resolution structure demonstrates that only minor alterations occur. Nevertheless, experiments indicate that Gly52 replacements in TmArgBP produce destabilizations comparable to those observed upon protein truncation or dissection in domains. Notably, we show that force-fields commonly used in computational biology do not reproduce this non-canonical state. Using TmArgBP as model system we here demonstrate that the structural context may force residues to adopt conformations believed to be strictly forbidden and that barely detectable alterations produce major destabilizations. Present findings highlight the role of subtle strains in governing protein stability. A full understanding of these phenomena is essential for an exhaustive comprehension of the factors regulating protein structures

    LINC00958 as new diagnostic and prognostic biomarker of childhood acute lymphoblastic leukaemia of B cells

    Get PDF
    BackgroundPaediatric acute B-cell lymphoblastic leukaemia is the most common cancer of the paediatric age. Although the advancement of scientific and technological knowledge has ensured a huge step forward in the management of this disease, there are 15%–20% cases of recurrence leading to serious complications for the patient and sometimes even death. It is therefore necessary to identify new and increasingly personalised biomarkers capable of predicting the degree of risk of B-ALL in order to allow the correct management of paediatric leukaemia patients.MethodsStarting from our previously published results, we validate the expression level of LINC00958 in a cohort of 33 B-ALL and 9 T-ALL childhood patients, using in-silico public datasets as support. Expression levels of LINC00958 in B-ALL patients stratified by risk (high risk vs. standard/medium risk) and who relapsed 3 years after the first leukaemia diagnosis were also evaluated.ResultsWe identified the lncRNA LINC00958 as a biomarker of B-ALL, capable of discriminating B-ALL from T-ALL and healthy subjects. Furthermore, we associated LINC00958 expression levels with the disease risk classification (high risk and standard risk). Finally, we show that LINC00958 can be used as a predictor of relapses in patients who are usually stratified as standard risk and thus not always targeted for marrow transplantation.ConclusionsOur results open the way to new diagnostic perspectives that can be directly used in clinical practice for a better management of B-ALL paediatric patients

    Interaction of the N-(3-Methylpyridin-2-yl)amide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode

    Get PDF
    Background Combined fatty acid amide hydrolase (FAAH) and cyclooxygenase (COX) inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here. Methodology/Principal Findings FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAHT488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R)- and (S)-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively), whereas the (S)-enantiomer of Ibu-AM5 (IC50 0.59 μM) was more potent than the (R)-enantiomer (IC50 5.7 μM). Multiple inhibition experiments indicated that both (R)-Flu-AM1 and (S)-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R)-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH. Conclusions/Significance The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors
    • …
    corecore