35 research outputs found

    Does exposure to nature make children more intelligent? : analysis in Polish children with and without ADHD

    Get PDF
    Previous studies have shown that exposure to nature and physical activity (PA) may be associated with higher intelligence in children. We examined whether there is an association between lifelong exposure to greenspace and bluespace and intelligence in children aged 10–13 with and without attention deficit hyperactivity disorder (ADHD), and whether PA mediates this association. The sample (N = 714) was collected within the NeuroSmog case-control study, where children with (N = 206) and without ADHD (N = 508) were recruited from 18 towns in Southern Poland. Nature exposure was estimated as the sum of the z-scores of the objective and perceived measures. Objective greenspace exposure was defined as the percentage of grass and tree cover in 500 m and 1 km buffers around lifelong residential addresses, respectively. Objective bluespace exposure was defined as the percentage of water cover in 500 m and 1 km buffers. Perceived greenspace/bluespace was measured as the parent-rated availability, quality, and use of greenspace/bluespace. Intelligence was assessed using the Polish version of the Stanford-Binet Intelligence Scales, 5th edition (SB5). SB5 Full Scale Intelligence Quotient (IQ), Nonverbal IQ, Verbal IQ, five factor and ten subtest scores were analysed as outcomes. The associations between nature and IQ scores were assessed by linear regressions separately for cases and controls, adjusting the models for sex, parental education, and urbanicity. Structural equation modeling was implemented to test whether PA mediated the association between nature and intelligence. None of the greenspace or bluespace measures were consistently associated with intelligence. PA was not found to be a mediator. We did not find evidence that higher lifelong nature exposure is associated with higher intelligence in Polish schoolchildren with or without ADHD. This casts doubts on whether exposure to nature has relevant influence on IQ

    Air pollution and attention in Polish schoolchildren with and without ADHD

    Get PDF
    Background: Development and functioning of attention—a key component of human cognition—can be affected by en vironmental factors. We investigated whether long- and short-term exposure to particulate matter with aerodynamic diameter < 10 μm (PM10) and nitrogen dioxide (NO2) are related to attention in 10- to 13-year-old children living in Polish towns recruited in the NeuroSmog case-control study. Methods: We investigated associations between air pollution and attention separately in children with attention deficit hyperactivity disorder (ADHD, n = 187), a sensitive, at-risk population with impaired attention and in population based typically developing children (TD, n = 465). Alerting, orienting, and executive aspects of attention were mea sured using the attention network test (ANT), while inhibitory control was measured with the continuous performance test (CPT). We assessed long-term exposure to NO2 and PM10 using novel hybrid land use regression (LUR) models. Short-term exposures to NO2 and PM10 were assigned to each subject using measurements taken at the air pollution monitoring station nearest to their home address. We tested associations for each exposure-outcome pair using adjusted linear and negative binomial regressions. Results: We found that long-term exposures to both NO2 and PM10 were associated with worse visual attention in chil dren with ADHD. Short-term exposure to NO2 was associated with less efficient executive attention in TD children and more errors in children with ADHD. It was also associated with shorter CPT response times in TD children; however, this effect was accompanied by a trend towards more CPT commission errors, suggestive of more impulsive performance in these subjects. Finally, we found that short-term PM10 exposure was associated with fewer omission errors in CPT in TD children. Conclusions: Exposure to air pollution, especially short-term exposure to NO2, may have a negative impact on attention in children. In sensitive populations, this impact might be different than in the general population

    Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions

    Get PDF
    The international Long-Term Ecological Research Network (ILTER) encompasses hundreds of long-term research/monitoring sites located in a wide array of ecosystems that can help us understand environmental change across the globe. We evaluated long-term trends (1990–2015) for bulk deposition, throughfall and runoff water chemistry and fluxes, and climatic variables in 25 forested catchments in Europe belonging to the UNECE International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). Many of the IM sites form part of the monitoring infrastructures of this larger ILTER network. Trends were evaluated for monthly concentrations of non-marine (anthropogenic fraction, denoted as x) sulphate (xSO4) and base cations x(Ca + Mg), hydrogen ion (H+), inorganic N (NO3 and NH4) and ANC (Acid Neutralising Capacity) and their respective fluxes into and out of the catchments and for monthly precipitation, runoff and air temperature. A significant decrease of xSO4 deposition resulted in decreases in concentrations and fluxes of xSO4 in runoff, being significant at 90% and 60% of the sites, respectively. Bulk deposition of NO3 and NH4 decreased significantly at 60–80% (concentrations) and 40–60% (fluxes) of the sites. Concentrations and fluxes of NO3 in runoff decreased at 73% and 63% of the sites, respectively, and NO3 concentrations decreased significantly at 50% of the sites. Thus, the LTER/ICP IM network confirms the positive effects of the emission reductions in Europe. Air temperature increased significantly at 61% of the sites, while trends for precipitation and runoff were rarely significant. The site-specific variation of xSO4 concentrations in runoff was most strongly explained by deposition. Climatic variables and deposition explained the variation of inorganic N concentrations in runoff at single sites poorly, and as yet there are no clear signs of a consistent deposition-driven or climate-driven increase in inorganic N exports in the catchments.Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditionsacceptedVersio

    Using Canopy Height Model Obtained with Dense Image Matching of Archival Photogrammetric Datasets in Area Analysis of Secondary Succession

    No full text
    One of the threats that has a significant impact on the conservation status and on the preservation of non-forest Natura 2000 habitats, is secondary succession, which is currently analyzed using airborne laser scanning (ALS) data. However, learning about the dynamics of this phenomenon in the past is only possible by using archival aerial photographs, which are often the only source of information about the past state of land cover. Algorithms of dense image matching developed in the last decade have provided a new quality of digital surface modeling. The aim of this study was to determine the extent of trees and shrubs, using dense image matching of aerial images. As part of a comprehensive research study, the testing of two software programs with different settings of image matching was carried out. An important step in this investigation was the quality assessment of digital surface models (DSM), derived from point clouds based on reference data for individual trees growing singly and in groups with high canopy closure. It was found that the detection of single trees provided worse results. The final part of the experiment was testing the impact of the height threshold value in elevation models on the accuracy of determining the extent of the trees and shrubs. It was concluded that the best results were achieved for the threshold value of 1.25&ndash;1.75 m (depending on the analyzed archival photos) with 10 to 30% error rate in determining the trees and shrubs cover

    Assessment of cyanobacteria impact on bathing water quality in Poland

    No full text
    Introduction: Quality of bathing water is of key importance for bathers’ health, mainly due to the fact, that each year millions of people use bathing sites as places for recreation and sport activities. Most of the bathing sites are of adequate quality of water, but still there are cases of health risk because bathing water is polluted. One of the main health risk factor in bathing water are cyanobacteria and their blooms. Cyanobacteria are microorganisms of morphological features of bacteria and algae. They live in colonies, which in large quantities show up as streaks, dense foam on the water surface. The aim of this paper was to assess the impact of cyanobacteria blooms on health regarding bathing water quality in Poland. Materials and methods: Assessment covered all bathing sites in Poland supervised by Polish National Sanitary Inspection (PIS) in the period from 2007 to 2009. The base was data collected during bathing water monitoring conducted by PIS and their formal decisions of bathing bans introduced in response to revealed bathing water pollution. Results and discussion: The results of assessment indicate, that about one-fourth of all bathing bans in Poland was due to cyanobacteria blooms. Conclusions: Every fifth bathing sites located on artificial lake or water reservoir and every tenth on the sea bathing sites were polluted. Average period of bathing ban due to cyanobacteria blooms in Poland varies. Relatively the shortest bathing bans were observed on the sea bathing sites (no longer than one week on average). Much longer were bathing bans on lakes and artificial lakes (one month on average)
    corecore