34 research outputs found

    A multi-omic study reveals BTG2 as a reliable prognostic marker for early-stage non-small cell lung cancer

    Get PDF
    B-cell translocation gene 2 (BTG2) is a tumour suppressor protein known to be downregulated in several types of cancer. In this study, we investigated a potential role for BTG2 in early-stage non-small cell lung cancer (NSCLC) survival. We analysed BTG2 methylation data from 1230 early-stage NSCLC patients from five international cohorts, as well as gene expression data from 3038 lung cancer cases from multiple cohorts. Three CpG probes (cg01798157, cg06373167, cg23371584) that detected BTG2 hypermethylation in tumour tissues were associated with lower overall survival. The prognostic model based on methylation could distinguish patient survival in the four cohorts [hazard ratio (HR) range, 1.51-2.21] and the independent validation set (HR=1.85). In the expression analysis, BTG2 expression was positively correlated with survival in each cohort (HR range, 0.28-0.68), which we confirmed with meta-analysis (HR=0.61, 95% CI 0.54-0.68). The three CpG probes were all negatively correlated with BTG2 expression. Importantly, an integrative model of BTG2 methylation, expression and clinical information showed better predictive ability in the training set and validation set. In conclusion, the methylation and integrated prognostic signatures based on BTG2 are stable and reliable biomarkers for early-stage NSCLC. They may have new applications for appropriate clinical adjuvant trials and personalized treatments in the future

    Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma

    Get PDF
    Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (Pdiscovery = 0.01 and Pvalidation = 2.71×10-3). Further, potential functional DNA methylation-gene expression-overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk

    SIPA1L3 methylation modifies the benefit of smoking cessation on lung adenocarcinoma survival: an epigenomic-smoking interaction analysis

    Get PDF
    Smoking cessation prolongs survival and decreases mortality of patients with non‐small‐cell lung cancer (NSCLC). In addition, epigenetic alterations of some genes are associated with survival. However, potential interactions between smoking cessation and epigenetics have not been assessed. Here, we conducted an epigenome‐wide interaction analysis between DNA methylation and smoking cessation on NSCLC survival. We used a two‐stage study design to identify DNA methylation-smoking cessation interactions that affect overall survival for early‐stage NSCLC. The discovery phase contained NSCLC patients from Harvard, Spain, Norway, and Sweden. A histology‐stratified Cox proportional hazards model adjusted for age, sex, clinical stage, and study center was used to test DNA methylation-smoking cessation interaction terms. Interactions with false discovery rate‐q ≤ 0.05 were further confirmed in a validation phase using The Cancer Genome Atlas database. Histology‐specific interactions were identified by stratification analysis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. We identified one CpG probe (cg02268510SIPA1L3) that significantly and exclusively modified the effect of smoking cessation on survival in LUAD patients [hazard ratio (HR)interaction = 1.12; 95% confidence interval (CI): 1.07-1.16; P = 4.30 × 10-7]. Further, the effect of smoking cessation on early‐stage LUAD survival varied across patients with different methylation levels of cg02268510SIPA1L3. Smoking cessation only benefited LUAD patients with low methylation (HR = 0.53; 95% CI: 0.34-0.82; P = 4.61 × 10-3) rather than medium or high methylation (HR = 1.21; 95% CI: 0.86-1.70; P = 0.266) of cg02268510SIPA1L3. Moreover, there was an antagonistic interaction between elevated methylation of cg02268510SIPA1L3 and smoking cessation (HRinteraction = 2.1835; 95% CI: 1.27-3.74; P = 4.46 × 10−3). In summary, smoking cessation benefited survival of LUAD patients with low methylation at cg02268510SIPA1L3. The results have implications for not only smoking cessation after diagnosis, but also possible methylation‐specific drug targeting

    A Novel Daily Runoff Probability Density Prediction Model Based on Simplified Minimal Gated Memory–Non-Crossing Quantile Regression and Kernel Density Estimation

    No full text
    Reliable and accurate daily runoff predictions are critical to water resource management and planning. Probability density predictions of daily runoff can provide decision-makers with comprehensive information by quantifying the uncertainty of forecasting. Models based on quantile regression (QR) have been proven to achieve good probabilistic prediction performance, but the predicted quantiles may crossover with each other, seriously reducing the reliability of the prediction. This paper proposes non-crossing quantile regression (NCQR), which guarantees that the intervals between adjacent quantiles are greater than 0, which avoids the occurrence of quantile crossing. In order to apply NCQR to the prediction of nonlinear runoff series, this paper combines NCQR with recurrent neural network (RNN) models. In order to reduce the model training time and further improve the model accuracy, this paper simplifies the minimal gated memory (MGM) model and proposes a new RNN model, called the simplified minimal gated memory (SMGM) model. Kernel density estimation (KDE) is used to transform the discrete quantiles predicted using SMGM-NCQR into a continuous probability density function (PDF). This paper proposes a novel daily density prediction model that combines SMGM-NCQR and KDE. Three daily runoff datasets in the Yangtze River Basin in China are taken as examples and compared with the advanced models in current research in terms of five aspects: point prediction evaluation, interval prediction evaluation, probability density prediction evaluation, the degree of quantile crossing and training time. The experimental results show that the model can provide high-quality and highly reliable runoff probability density predictions

    An Integral 1-D Eulerian–Lagrangian Method and Its Application to a Hydrodynamic River Network

    No full text
    It is difficult for a one-dimensional river network hydrodynamic model to manage bifurcations. Traditional methods use simplified junction methods to avoid solving physical equations at bifurcations, which can cause physical distortions and errors. In this article, we propose an algorithm that allows a Eulerian–Lagrangian method (ELM) to track through bifurcations then solve advective terms, in combination with velocity–pressure couplings, to solve physical equations at bifurcations. The new method discards the simplifications and assumptions used by traditional models and is more complete in theory. We tested the new method with two ideal examples, and the results showed that the new method is time-step independent and grid independent. A simple bifurcation was used to compare this method with MIKE11
    corecore