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Abstract

The performance of batteries in electrified powertrain systems is highly influenced by mass diffusion and electro-

chemistry which are often ignored in the simulation of these systems due to the lack of a conserved, efficient, and

integrable battery model. Therefore, this work numerically implements an electrochemical-thermal battery model

with conserved numerical schemes and efficient numerical methods which include Jacobian-based and Jacobian-Free

Newton Krylov (JFNK) solvers. The performance of the developed model is evaluated by simulating measurements of

a LiFePO4 battery under constant discharge rates and Urban Dynamometer Driving Schedule (UDDS), as well as by a

detailed comparison with existing battery models. The comparison highlights two features of our model: (a) negligible

mass imbalances in the spherical diffusion modelling, which are five orders of magnitude smaller than those from a

recent battery model in the literature; (b) efficient modelling of real-world driving cycles with the computational time

two orders of magnitude shorter than that of the literature model. These advanced features indicate that our model

can be applied in both fundamental electrochemical-thermal studies of lithium-ion battery and detailed simulations of

electrified powertrains as an accurate and efficient sub-model.
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1. Introduction

Electrifying transportation system with de-carbonized electricity is considered as critical in mitigating greenhouse

gas emissions [1–4]. According to the European Commission, electrified vehicles are promising technologies towards

the future electrified transportation for the following reasons: the electrified powertrain systems are more efficient

than those based on fossil fuels, electricity can be generated from renewable energy sources, and batteries of the

electrified powertrain systems could stabilize the power grid and thus enable the integration of renewable sources [5].

Lithium-ion batteries are commonly used in the electrified powertrain systems, which exhibited great potentials for

their applications in transportations almost a decade ago [6]. Tremendous advances have been made in lithium-ion

battery technology so far to improve energy density and cycle life and reduce costs [7], which bring both climate

and economic benefits based on a recent multi-regional case study [8]. However, further improvements of battery

technologies are still required to roll out electrified vehicles across the world [7], and the fundamental understanding

of the behaviours of lithium-ion batteries is crucial in this process.

The behaviours of lithium-ion batteries are mainly controlled by the diffusion of reacting species, as well as elec-

trochemical reactions [9]. The physics-based battery model predicts the spatially distributed molar concentrations of

lithium-ions and potentials in both electrolyte and electrodes [10–13], which is known as the pseudo two-dimensional

(P2D) model. In the battery model, the most critical and computationally intensive process is the electrochemistry

driven spherical diffusion of lithium-ions in solid particles with variable diffusivity, which requires careful numerical

implementation. Ford Versypt and Braatz [14] compared several finite difference schemes in discretising the spherical

diffusion equation with variable diffusivity and found that the accuracies of the numerical solutions are dependent on

the scheme applied. Besides, Torchio et al. [15] applied a high-order finite difference scheme to discretise the spher-

ical diffusion equation in their battery model. Recently, Liu et al. [16] discretised the spherical diffusion equation

for gas transport in coal with the finite difference method to estimate variable diffusivity via matching measurements.

A known issue with the finite difference method is mass conservation, which can be resolved by the finite volume

method. In the modelling of spherical flames, Chen and his coworkers [17–19] solved unsteady Navier-Stokes e-

quations in a one-dimensional spherical coordinate with the finite volume method. However, the cell averaged finite

volume method cannot directly be used to resolve states on the spherical surface where electrochemical reactions
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occur in the battery model. Therefore, the control volume method [20] was implemented by Zeng et al. [21] and

Chayambuka et al. [22] in the spherical diffusion modelling to obtain accurate mole concentration of lithium-ion

on the spherical surface. The numerical formulation by Zeng et al. [21] approximates the mass matrix of the time

derivative to achieve mass conservation, while Chayambuka et al. [22] applied mass conservation law to each control

volume which automatically conserves mass. Apart from the numerical scheme, iterative methods are required to

handle variable diffusivity dependent on mole concentrations of lithium-ion in the battery model. Considering the

wide applications of the spherical diffusion in different research areas, it is critical to perform a rigorous numeri-

cal modelling of the spherical diffusion with variable diffusivity to better understand the fundamental mass transfer

process.

Both the mass diffusion and electrochemical reactions in lithium-ion batteries are dependent on temperatures and

thus a thermal model is normally coupled with the battery model to formulate an electrochemical-thermal model.

This model has been applied by numerous studies to investigate thermal behaviours of lithium-ion batteries [23–29]

under constant charge/discharge rates using commercial models. However, real-world driving cycles of electrified

powertrains, e.g., Urban Dynamometer Driving Schedule (UDDS), are much more complicated than constant-rate

discharges, which significantly affect the performance of batteries as well. In addition, fast-changing, time-dependent

current profiles from real-world driving cycles may challenge the convergence of most electrochemical-thermal battery

models. Therefore, it is essential to have a battery model which simulates real-world driving cycles accurately and

efficiently, as well as bridges the gap between electrochemical-thermal processes and the performance of electrified

powertrains.

This work first applies the control volume method to discretise the spherical diffusion equation and the finite

volume method for the rest equations whose solutions at boundaries are not as critical as those of the spherical

diffusion equation in the battery modelling. Then, the resulting coupled and non-linear equations are solved by

two numerical methods with and without Jacobian dependence to achieve fast convergence in simulating real-world

driving cycles. For the Jacobian-based method, the Symbolic Math Toolbox in MATLAB is used to formulate the

Jacobian matrix which is taken as an input of MATLAB’s non-linear system solver. In terms of the Jacobian free

approach, a preconditioned Newton-Krylov method [30] is used and the generalized minimum residual method is
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applied to approximate the Newton correction based on the Krylov subspace. With the conservative schemes and

efficient numerical methods, this study builds a Lithium-ion battery model for Powertrain research (LionPower),

which is available at https://github.com/hyuanmech/LionPower. A comprehensive comparison is also carried out

among LionPower, an open-source battery model termed LIONSIMBA [15], as well as a commercial battery model

called GT-AutoLion, which highlights the advanced features of our model.

2. Numerical Schemes for the Battery Model

The battery model is comprised of three domains: the negative electrode (anode), the separator, and the positive

electrode (cathode) in the horizontal x-axis, and the transport of lithium-ions across these domains represents the

charge/discharge process, as shown in Fig. 1. In both electrodes, lithium-ions are stored in the solid phase in lattice

structures which are emulated by several spherical particles and electrochemical reactions occur on the particles’

surfaces which drive the diffusion of lithium-ions in the radial r-axis. Therefore, the transports of lithium-ion in

both solid and liquid phases, as well as the corresponding charge distributions formulate the physical picture of the

battery model. Considering these processes are temperature-dependent, the thermal characteristics of the battery

need to be considered in the modelling, which leads to an electrochemical-thermal model of lithium-ion batteries.

Conservative numerical schemes for discretising the governing equations formulating the battery model are discussed

in the following sections.

2.1. Spherical Diffusion in Particle

The diffusion of lithium-ions in the solid spherical particle is expressed in Eq. 1 based on Fick’s law. The boundary

conditions are given by Eq. 2 at the centre and surface of the particle, and the molar flux j is the driving force for

the diffusion. The governing equation is solved at all grid points in the x-axis allocated to the electrodes, which is

the most computationally intensive part in the battery modelling. Therefore, an efficient and conservative numerical

scheme is critical for solving the spherical diffusion problem.

r2 ∂cs

∂t
=

∂

∂r

(
Dsr2 ∂cs

∂r

)
(1)
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Figure 1: Schematic of the lithium-ion battery during discharge.

∂cs

∂r

∣∣∣∣∣
r=0

= 0,
∂cs

∂r

∣∣∣∣∣
r=Rs

= −
j

Ds
(2)

Before the discretisation, the variables in both the governing equation and the boundary conditions are normalised

using these correlations: ĉs = cs/cs,max, r̂ = r/Rs, and ĵ = j/ j̄, and the resulting equations are expressed in Eqs. 3 and

4. It is worth emphasizing that the normalisation is a crucial step in solving a system of partial differential equations,

which leads to a well-scaled Jacobian matrix that can be readily handled by solvers. In this work, the normalisation is

applied to all governing equations and boundary conditions prior to the discretisation.

r̂2 ∂ĉs

∂t
=

∂

∂r̂

(
r̂2 Ds

R2
s

∂ĉs

∂r̂

)
(3)

∂ĉs

∂r̂

∣∣∣∣∣
r̂=0

= 0,
∂ĉs

∂r̂

∣∣∣∣∣
r̂=1

= − j̄
ĵ

Ds

Rs

cs,max
(4)

The schematic of the spherical diffusion model and its spatial discretisation are shown in Fig. 2, which were

previously applied by Zeng et al. [21] and Chayambuka et al. [22]. Furthermore, both studies [21, 22] recommended

variable spacing of grid points following Eq. 5, and fine meshes are used in the region near the spherical surface
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where the gradient of mole concentration changes sharply. This local refinement improves the modelling accuracy of

the surface concentration which is critical for computing the rate of progress of the electrochemical reaction.

r̂ =
H − Hβ

H − 1
, β =

Ns − i
Ns − 1

, 1 6 i 6 Ns (5)

This work applies both the control volume method and the variable spacing in the spatial discretisation of the nor-

malised equation. Note that the uniform spacing of grid points in Fig. 2 is for the simplicity of illustration.

Figure 2: Schematic of the spherical diffusion model and discretisation based on the control volume method. Solid
circles represent locations where grid points locate, while dashed circles and dashed vertical lines denote surfaces of
control volume elements.

Integrating both sides of Eq. 3 from i − 1/2 to i + 1/2 gives

1
3

(
r̂3

i+ 1
2
− r̂3

i− 1
2

) ∂ĉs,i

∂t
=

Ds,i+ 1
2

R2
s

r̂2
i+ 1

2

∂ĉs,i+ 1
2

∂r̂
−

Ds,i− 1
2

R2
s

r̂2
i− 1

2

∂ĉs,i− 1
2

∂r̂
(6)

The left-hand side (LHS) of Eq. 6 represents the change of normalised mole concentration in a spherical shell i, which

equals to the net-flux via the left and right interfaces of the control volume. After approximating the interface fluxes

with the central difference method, we obtain

1
3

(
r̂3

i+ 1
2
− r̂3

i− 1
2

) ∂ĉs,i

∂t
=

Ds,i+ 1
2

R2
s

r̂2
i+ 1

2

ĉs,i+1 − ĉs,i

r̂i+1 − r̂i
−

Ds,i− 1
2

R2
s

r̂2
i− 1

2

ĉs,i − ĉs,i−1

r̂i − r̂i−1
(7)

The discretised equations for the centre and the boundary volumes are expressed in Eqs. 8 and 9, respectively.
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(r̂2 − r̂1)3

24
∂ĉs,1

∂t
=

Ds,1+ 1
2

R2
s

r̂2
1+ 1

2

ĉs,2 − ĉs,1

r̂2 − r̂1
(8)

1
3

r̂3
N −

(
r̂N + r̂N−1

2

)3 ∂ĉs,N

∂t
= −

j̄r̂2
N

Rscs,max
ĵ −

Ds,N− 1
2

R2
s

r̂2
N− 1

2

ĉs,N − ĉs,N−1

r̂N − r̂N−1
(9)

Combining Eq. 7, Eq. 8, and Eq. 9 gives the matrix form of the spherical diffusion equation in Eq. 10. The

conservative spatial discretisation of the spherical diffusion equation in this work is inspired by a very recent numerical

study [22]. However, the temporal discretisation in [22] assumed that the variable diffusion coefficient relies on the

mole concentrations of lithium-ion from the previous time point instead of the current one, which will result in

noticeable errors with either a large time step or fast-changing current inputs from powertrain systems. Therefore, this

work applies the Crank-Nicolson scheme for the time derivative in Eq. 10 and makes no assumptions in computing the

variable diffusion coefficient, which achieves accurate modelling of the spherical diffusion. The discretised algebraic

equation based on the Crank-Nicolson scheme is expressed in Eq. 11.

As
∂ĉs

∂t
= f (ĉs) (10)

As
ĉn+1

s − ĉn
s

∆t
=

1
2

[
f
(
ĉn

s
)

+ f
(
ĉn+1

s

)]
(11)

2.2. Transport in Electrolyte

The transport of lithium-ions in the electrolyte is a typical multilayer diffusion problem. The governing equation

and the boundary conditions are shown in Eqs. 12 and 13 where as = 3εs/Rs, and the requirement of matching

interface fluxes are expressed in Eq. 14 where De f f
e represents the effective diffusion coefficient considering the

volume fraction of the electrolyte in each domain and is given by De f f
e = Deε

γ
e . Efforts have been made by Hickson et

al. [31] and March and Carr [32] to solve the multilayer diffusion problem with finite difference schemes and control

volume schemes, respectively. Hickson et al. [31] matched the diffusivities by approximating the diffusion coefficient

on the interface using adjacent values. In comparison, March and Carr [32] split the control volume element on the

7



interface into two and then applied the control volume schemes to these small elements, which, however, has not been

verified for pure Neumann boundary conditions, e.g., Eq. 13. In this case, we follow the idea of Hickson et al. [31]

and apply it with the finite volume scheme.

εe
∂ce

∂t
=

∂

∂x

(
De f f

e
∂ce

∂x

)
+ as (1 − t+) j (12)

∂ce

∂x

∣∣∣∣∣
x=0

=
∂ce

∂x

∣∣∣∣∣
x=L

= 0 (13)

De f f
e,n

∂ce

∂x

∣∣∣∣∣
x=Ln

= De f f
e,sep

∂ce

∂x

∣∣∣∣∣
x=0sep

, De f f
e,sep

∂ce

∂x

∣∣∣∣∣
x=Lsep

= De f f
e,p

∂ce

∂x

∣∣∣∣∣
x=0p

(14)

To normalise the governing equation and boundary conditions, the following correlations: ĉe = ce/ce0, x̂ = x/L,

ĵ = j/ j̄ are used, which result in

εe
∂ĉe

∂t
=

∂

∂x̂

De f f
e

L2

∂ĉe

∂x̂

 + as (1 − t+)
j̄

ce0
ĵ (15)

∂ĉe

∂x̂

∣∣∣∣∣
x̂=0

=
∂ĉe

∂x̂

∣∣∣∣∣
x̂=1

= 0 (16)

The mesh of the negative electrode, the separator, and the positive electrode is shown in Fig. 3 and a uniform

spacing is used in each domain. The effective diffusion coefficient on the interface is interpolated from the two

adjacent values. Based on the example shown in Fig. 3, the effective diffusion coefficient on the interface of the

negative electrode and the separator is shown in Eq. 17.

De f f
e,ns =

De f f
e,Nn

∆xsep + De f f
e,1sep

∆xn

∆xn + ∆xsep
(17)

Integrating both sides of Eq. 15 on a control volume element i of a random domain from i − 1/2 to i + 1/2 and

applying the central difference scheme to approximate the fluxes on the surfaces of the control volume element, we
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Figure 3: Grid points of the negative electrode, the separator, and the positive electrode with the thickness of Ln, Lsep,
and Lp, respectively. The grid points are meshed uniformly in each domain, and ∆xn, ∆xsep, and ∆xp denote the grid
sizes. The effective diffusion coefficient on the inner interface is interpolated from the values of the two adjacent
volume elements.

obtain

∂ĉe,i

∂t
=

De f f
e,i + De f f

e,i+1

2εeL2

ĉe,i+1 − ĉe,i

∆x̂
−

De f f
e,i−1 + De f f

e,i

2εeL2

ĉe,i − ĉe,i−1

∆x̂
+

as (1 − t+)
εe

j̄
ce0

ĵi∆x̂ (18)

Note that if the node i belongs to the separator, ĵi becomes zero as the electrochemical reactions only occur in the

negative and positive electrodes. Incorporating the boundary conditions in Eq. 18, the discretised equations for the

two boundary volume elements are described by Eqs. 19 and 20.

∂ĉe,1n

∂t
=

De f f
e,1n

+ De f f
e,2n

2εn
e L2

ĉe,2n − ĉe,1n

∆x̂n
+

as,n (1 − t+)
εn

e

j̄
ce0

ĵ1n∆x̂n (19)

∂ĉe,Np

∂t
=

De f f
e,Np−1 + De f f

e,Np

2ε p
e L2

ĉe,Np−1 − ĉe,Np

∆x̂p
+

as,p (1 − t+)
ε

p
e

j̄
ce0

ĵNp∆x̂p (20)

With the interpolated effective diffusion coefficient for the interface between the negative electrode and the separator

in Eq. 17, the discretised equation for the control volume element Nn can be derived, which is given by

∂ĉe,Nn

∂t
=

De f f
e,ns

εeL2

ĉe,1sep − ĉe,Nn(
∆x̂n + ∆x̂sep

)
/2
−

De f f
e,Nn−1 + De f f

e,Nn

2εeL2

ĉe,Nn − ĉe,Nn−1

∆x̂n
+

as (1 − t+)
εe

j̄
ce0

ĵNn∆x̂n (21)

Following the same approach, the governing equations for the control volume elements 1sep, Nsep, and 1p can be

discretised to match the interface diffusivities.

The discretised equations above can be written in the matrix form, as shown in Eq. 22 with the source term Sj
ce

representing the driving force for the diffusion. After approximating the time derivative with the Crank-Nicolson

scheme, the fully discretised algebraic equation is shown in Eq. 23.
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∂ĉe

∂t
= g (ĉe) + Sj

ce

(
ĵ
)

(22)

ĉn+1
e − ĉn

e

∆t
=

1
2

[
g
(
ĉn

e
)

+ g
(
ĉn+1

e

)]
+ Sj

ce

(
ĵ
)

(23)

2.3. Potential in Electrolyte

The potentials in the liquid phase are affected by the molar concentrations of lithium-ion in the electrolyte, as

well as the molar fluxes from the electrochemical reactions, as described in Eq. 24 where κe f f denotes the effective

conductivity and is given by κre f = κε
γ
e . Zero potential flux is assigned to both boundaries in Eq. 25. Note that

Poisson’s equation (Eq. 24) with pure Neumann boundary conditions (Eq. 25) has infinite number of solutions.

A Dirichlet boundary condition, φre f
e,0 = 0, is used to anchor the numerical solution since we are only interested in

differences of the potentials.

∂

∂x

(
κe f f ∂φe

∂x

)
+
∂

∂x

[
2RTκe f f

F
(t+ − 1)

(
1 +

dln f±
dlnce

)
∂lnce

∂x

]
+ asF j = 0 (24)

∂φe

∂x

∣∣∣∣∣
x=0

=
∂φe

∂x

∣∣∣∣∣
x=L

= 0 (25)

The normalised governing equation and boundary conditions are shown in Eqs. 26 and 27, respectively. It is

assumed that f± is a constant to simplify the following numerical implementation.

∂

∂x̂

(
κe f f ∂φe

∂x̂

)
+

2RT̂Tre f κ
e f f

F
∂

∂x̂

(
κe f f

ĉe

∂ĉe

∂x̂

)
+ asF j̄L2 ĵ = 0 (26)

∂φe

∂x̂

∣∣∣∣∣
x̂=0

=
∂φe

∂x̂

∣∣∣∣∣
x̂=1

= 0 (27)

Integrating Eq. 26 on a control volume element i of a random domain from i − 1/2 to i + 1/2 and applying the

central difference scheme to approximate the fluxes on the surfaces of the control volume element, we obtain
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(28)

κ
e f f
i + κ

e f f
i+1

2
φe,i+1 − φe,i

∆x̂
−
κ

e f f
i−1 + κ

e f f
i

2
φe,i − φe,i−1

∆x̂
+

2RT̂Tre f (t+ − 1)
F

κe f f
i + κ

e f f
i+1

ĉe,i + ĉe,i+1

ĉe,i+1 − ĉe,i

∆x̂
−

κ
e f f
i−1 + κ

e f f
i

ĉe,i−1 + ĉe,i

ĉe,i − ĉe,i−1

∆x̂

 + asF j̄L2 ĵi∆x̂ = 0

With the Dirichlet boundary condition at x̂ = 0, the flux at the same position is approximated based on the Taylor

expansion of φe,1n and φe,2n with respect to φre f
e,0 . Besides, the conductivity at x̂ = 0 is extrapolated from κ

e f f
1n

and κe f f
2n

.

The discretised equation with the Dirichlet boundary condition is shown in Eq. 29, while the one with the Neumann

boundary condition can be derived straightforwardly, as given by Eq. 30.

κ
e f f
1n

+ κ
e f f
2n

2
φe,2n − φe,1n

∆x̂n
−

3κe f f
1n
− κ

e f f
2n

2

9φe,1n − φe,2n − 8φre f
e,0

3∆x̂n
+

2RT̂Tre f (t+ − 1)
F

 κe f f
1n

+ κ
e f f
2n

ĉe,1n + ĉe,2n

ĉe,2n − ĉe,1n

∆x̂n

+asF j̄L2 ĵ1n∆x̂n = 0

(29)

κ
e f f
Np−1 + κ

e f f
Np

2
φe,Np−1 − φe,Np

∆x̂p
+

2RT̂Tre f (t+ − 1)
F

 κ
e f f
Np−1 + κ

e f f
Np

ĉe,Np−1 + ĉe,Np

ĉe,Np−1 − ĉe,Np

∆x̂p

 + asF j̄L2 ĵNp∆x̂p = 0 (30)

Similar to the transport problem in the electrolyte, the discretised equations for the four control volume elements

adjacent to the two internal interfaces are derived with the interpolated physical quantity (electrolyte conductivity) on

the interfaces.

The matrix form describing the potential distribution in the electrolyte is expressed in Eq. 31, which is not time-

dependent as the change of potential is considered to occur instantaneously, especially compared with the diffusion.

h (Φe) + g1 (ĉe) + Sj
Φe

(
ĵ
)

= 0 (31)

2.4. Potential in Electrode

The governing equation and boundary conditions for the potentials in the solid phase are given by Eqs. 32 and 33

where σe f f = σεs is the effective conductivity. The normalised equations are shown in Eqs. 34 and 35.
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∂

∂x

(
σe f f ∂φs

∂x

)
= asF j (32)

−σ
e f f
n

∂φs

∂x

∣∣∣∣∣
x=0

= −σ
e f f
p

∂φs

∂x

∣∣∣∣∣
x=L

= I,
∂φs

∂x

∣∣∣∣∣
x=Ln

=
∂φs

∂x

∣∣∣∣∣
x=Ln+Lsep

= 0 (33)

∂

∂x̂

(
σe f f ∂φs

∂x̂

)
= asF j̄L2 ĵ (34)

−σ
e f f
n

∂φs

∂x̂

∣∣∣∣∣
x̂=0

= −σ
e f f
p

∂φs

∂x̂

∣∣∣∣∣
x̂=1

= LI,
∂φs

∂x̂

∣∣∣∣∣
x̂=Ln/L

=
∂φs

∂x̂

∣∣∣∣∣
x̂=(Ln+Lsep)/L

= 0 (35)

The potentials in the negative and positive electrodes are handled separately. The spatial discretisation is only

carried out for the negative electrode in this work, which can be similarly extended to the positive electrode. With the

finite volume method, the discretised governing equation and boundary conditions are expressed in Eqs. 36, 37, and

38, which can be written in the matrix form in Eq. 39.

σe f f
(
φs,i − φs,i−1

∆x̂n
−
φs,i+1 − φs,i

∆x̂n

)
= as,nF j̄L2 ĵi∆x̂n (36)

σe f f φs,2n − φs,1n

∆x̂n
+ LI = as,nF j̄L2 ĵ1n∆x̂n (37)

σe f f φs,Nn−1 − φs,Nn

∆x̂n
= as,nF j̄L2 ĵNn∆x̂n (38)

w (Φs) − Sj
Φs

(
ĵ
)

= 0 (39)

It is clear that the potential in the solid phase is described by Poisson’s equation with pure Neumann boundary

conditions, indicating Eq. 39 has infinite number of solutions. Note that the potential in the solid phase is related to
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the other variables via the Butler-Volmer kinetics, as shown in Eqs. 40 and 41, which helps to anchor the solution.

The normalised equation is expressed in Eq. 42 with its matrix form given by Eq. 43.

j = kcαn
e

(
cs,max − cs,sur f

)αn
cαp

s,sur f

[
exp

(
αnF
RT

η
)
− exp

(
−
αpF
RT

η

)]
(40)

η = φs − φe − U (41)

ĵ =
k
j̄

(ĉece0)αn
[
cs,max

(
1 − ĉs,sur f

)]αn
(
ĉs,sur f cs,max

)αp

exp
 αnF

RT̂Tre f
η

 − exp
− αpF

RT̂Tre f
η

 (42)

S
(
ĵ
)

= 0 (43)

2.5. Heat Conduction

As mentioned previously, the electrochemical model is temperature-dependent, and thus a thermal model is critical

to accurately simulate the behaviours of batteries. The governing equation of the thermal model in 1D is shown in Eq.

44 with the source term q representing the volumetric heat generation from various sources. Note that the negative

and positive current collectors are included in the thermal model, which can be considered as pure resistors with their

ohmic heat generation expressed in Eq. 46. The reaction heat, the reversible entropic heat, and the ohmic heat appear

in both electrodes, while the separator only has the ohmic heat. The expressions for computing these heats are shown

in Eqs. 47, 48, and 49. The convective heat transfer is applied to the left of the negative current collector and the right

of the positive current collector as the boundary condition, which is described in Eq. 50.

ρcp
∂T
∂t

=
∂

∂x

(
λ
∂T
∂x

)
+ q (44)

q = qohm,cc + qrxn + qrev + qohm (45)
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qohm,cc =
I2

σcc
(46)

qrxn = asF jη (47)

qrev = asF jT
∂U
∂T

(48)

qohm = σe f f
(
∂φs

∂x

)2

+ κe f f
(
∂φe

∂x

)2

+
2RT (1 − t+) κe f f

F
∂lnce

∂x
∂φe

∂x
(49)

−λncc
∂T
∂x

∣∣∣∣∣
x=0ncc

= h
(
Tamb − T1ncc

)
, −λpcc

∂T
∂x

∣∣∣∣∣
x=Lpcc

= h
(
TNpcc − Tamb

)
(50)

The finite volume scheme is used to discretise the normalised governing equation and boundary conditions in Eqs.

51 and 52. The discretised governing equation for an internal control volume element of a random domain is given

by Eq. 53. To handle the Robin boundary conditions in Eq. 52, Taylor expansion is applied to the two adjacent points

of the boundary with respect to the boundary surface, and the second-order approximation for the boundary thermal

flux can be obtained, as shown in Eqs. 54 and 55. With the addition of negative and positive current collectors, four

internal interfaces are formed and thus eight control volume elements need to be discretised with interpolated thermal

conductivities on these interfaces.

ρcp
∂T̂
∂t

=
∂

∂x̂

(
λ

L2

∂T̂
∂x̂

)
+

q
Tre f

(51)

−λncc
∂T̂
∂x̂

∣∣∣∣∣∣
x̂ncc=0

=
hL

(
Tamb − T1ncc

)
Tre f

, −λpcc
∂T̂
∂x̂

∣∣∣∣∣∣
x̂pcc=1

=
hL

(
TNpcc − Tamb

)
Tre f

(52)
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ρcp
∂T̂i

∂t
=

λ

L2

(
T̂i+1 − T̂i

∆x̂
−

T̂i − T̂i−1

∆x̂

)
+

q
Tre f

∆x̂ (53)

ρncccp,ncc
∂T̂1ncc

∂t
=
λncc

L2

(
T̂2ncc − T̂1ncc

∆x̂ncc
−

9T̂1ncc − T̂2ncc − 8Tamb

3∆x̂ncc + 8λncc/h

)
+

q1ncc

Tre f
∆x̂ncc (54)

ρpcccp,pcc
∂T̂Npcc

∂t
=
λpcc

L2

−9T̂Npcc + T̂Npcc−1 + 8Tamb

3∆x̂pcc + 8λpcc/h
−

T̂Npcc − T̂Npcc−1

∆x̂pcc

 +
qNpcc

Tre f
∆x̂pcc (55)

The matrix form of the heat conduction model is given by Eq. 56 where Sj
T denotes the source term for the heat

generation. Based on the Crank-Nicolson scheme, the fully discretised algebraic equation is expressed in Eq. 57.

ρcp
∂T̂
∂t

= z
(
T̂
)

+ Sj
T

(
ĵ
)

(56)

ρcp
T̂n+1 − T̂n

∆t
=

1
2

[
z
(
T̂n

)
+ z

(
T̂n+1

)]
+ Sj

T

(
ĵ
)

(57)

3. Methods for Non-linear Equations

The spatial discretisation of the governing equations produces a system of differential algebraic equations (DAEs)

which is comprised of Eqs. 10, 22, 31, 39, 43, and 56 and can be solved by integrators, e.g., the IDA package

from SUNDIALS [33] used by LIONSIMBA [15]. Note that MATLAB has its own DAE solver, ode15s, which

was successfully applied by the authors in solving a combustion model coupled with chemical kinetics [34] and

can certainly be implemented to solve the electrochemical-thermal model. However, a potential issue with these

integrators is the relatively slow convergence rate with fast-changing inputs, which may limit their applications in the

powertrain modelling.

In this work, the DAE system is further discretised by the Crank-Nicolson scheme, which formulates non-linear

and coupled algebraic equations, including Eqs. 11, 23, 31, 39, 43, and 57. The numerical methods with and without

Jacobian matrix are used to solve these algebraic equations, the general form of which is given by
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F (u) = 0 (58)

where F is the collection of all algebraic equations, and u represents the state vector including cs, ce, φe, φs, T , j, as

well as the current I which normally varies with time in electrified powertrain systems.

3.1. Jacobian-based Methods

Newton’s method is probably the most commonly used Jacobian-based approach for solving Eq. 58. A multivari-

ate Taylor expansion of F (u) with respect to the current solution uk gives

F
(
uk+1

)
= F

(
uk

)
+ F

′
(
uk

) (
uk+1 − uk

)
+ O

[(
uk+1 − uk

)2
]

(59)

Ignoring the high-order terms and setting F
(
uk+1

)
= 0, Newton’s method is derived by the following iteration starting

from an initial estimation u0,

uk+1 = uk + δuk, J
(
uk

)
δuk = −F

(
uk

)
(60)

where J
(
uk

)
= F′

(
uk

)
is the Jacobian matrix. The iteration is terminated once

∥∥∥∥F
(
uk

)∥∥∥∥ is small enough based on the

user-defined convergence criterion.

The most challenging task in implementing Newton’s method is the formulation of the Jacobian matrix, especially

for the non-linear and coupled algebraic system in this work. With MATLAB’s Symbolic Math Toolbox, the Jacobian

matrix can be derived analytically. Since the diagonal blocks of the Jacobian matrix are computed explicitly when

evaluating F
(
uk

)
, they are directly used in formulating the Jacobian matrix, and those non-diagonal blocks rely on the

analytic expressions. To further accelerate the formulation of the Jacobian matrix, the parallel computation is applied

wherever possible, which helps to compensate for MATLAB’s inefficient evaluation of large functions.

Alternatively, with the finite difference method, the Jacobian matrix can be approximated at a fixed point, and an

example is given by Eq. 61
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Jk =
F

(
uk + ξ

)
− F

(
uk − ξ

)
2ξ

, ξ = eps1/3 (61)

where eps is the floating-point relative accuracy, 2−52. Since most numerical methods for solving non-linear equations

only require evaluating the Jacobian matrix at the current solution, uk, the numerically approximated Jacobian matrix

well serves for this purpose. For example, trust-region method [35] solves non-linear equations by approximating

F with a quadratic function in a trusted region centred by the current solution point, uk. The quadratic function is

formulated based on approximated Jacobian and Hessian matrices, which is applied to locate the next point, uk+1,

leading to the regional minimum. The iteration goes on by updating approximated Jacobian and Hessian matrices at

the new solution point until the convergence criterion is satisfied. The non-linear system solver provided by MATLAB,

fsolve, is based on the trust-region algorithm and applies the finite difference method to approximate the Jacobian

matrix if it is not provided. It should be noted that implementing the finite-difference approximation in each iteration

is very computationally intensive, especially for large problems. Therefore, LionPower provides the numeric Jacobian

matrix to fsolve, which significantly reduces the computational time.

3.2. Jacobian-free Method

Owing to the complexity involved in deriving the Jacobian matrix, the Jacobian-free methods are also widely used

to solve non-linear equations. Among them, the Jacobian-Free Newton Krylov (JFNK) method [30, 36–39] is well

known for solving large-scale problems, which replaces fsolve in LionPower when a fine mesh is used in the battery

simulation or integrated into a hybrid electric powertrain model, as the derivation of the analytic Jacobian matrix

becomes inefficient in MATLAB with an increased number of state variables.

The basic idea of JFNK is to minimise
∥∥∥∥Jδuk + F

(
uk

)∥∥∥∥ by constructing δuk from a subspace spanned by the

Krylov vectors. Given an initial guess, δuk
0 , as the Newton correction, the initial linear residual, rk

0 , is computed by

rk
0 = −F

(
uk

)
− Jδuk

0 (62)

The Krylov subspace is formulated by the products of the Jacobian matrix and the initial residual, which can be written

as
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Km = span
(
rk

0 , Jrk
0 , J2rk

0 , ..., Jm−1rk
0

)
(63)

where m is the dimension of the Krylov subspace and is smaller than the number of unknowns. Based on the Krylov

subspace, Newton correction is constructed by

δuk
m = δuk

0 +

m−1∑
i=0

βiJirk
0 (64)

where βi are coefficients that minimise the norm. The Generalized Minimal RESidual function (GMRES) is applied

to compute βi in MATLAB.

The construction of the Newton correction in Eq. 64 suggests that the Jacobian matrix is not required as long as

the matrix-vector products can be approximated. The finite difference method is used in the approximation, which is

given by

Jv =
F

(
uk + ζv

)
− F

(
uk

)
ζ

(65)

where ζ is the perturbation parameter. The approach proposed by Brown and Saad [40] is applied in this work to

estimate ζ, which is expressed in Eq. 66.

ζ =
b
‖v‖2

max
[
|ukTv|, typ uk|v|

]
sign

(
ukTv

)
(66)

where b denotes the square root of relative error in computing F
(
uk

)
, and typ uk is the typical size of uk.

To reduce the number of GMRES iterations, which is indicated by m in Eq. 64, the JFNK method is preconditioned

by a frozen, representative Jacobian matrix, J∗, as shown in Eq. 67.

J∗−1J
(
uk

)
δuk = −J∗−1F

(
uk

)
(67)

The term J∗−1J
(
uk

)
is close to an identity matrix, which substantially simplifies the GMRES iteration. In this work,

the frozen Jacobian matrix is derived based on the finite difference method in Eq. 61, and its inverse is handled by the
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incomplete LU factorization. Note that the frozen Jacobian matrix might be updated during the modelling when the

simulation struggles to converge.

4. Model Performance

To highlight the features of LionPower, it is compared with two existing battery models: LIONSIMBA and GT-

AutoLion. These three models mainly apply the finite volume method to discretise the governing equations. Special

considerations are given to the spherical diffusion equation by LionPower and LIONSIMBA. The control volume

method and a high-order finite difference method are used to discretise the spherical diffusion equation by LionPower

and LIONSIMBA, respectively. In terms of the numerical solver, LIONSIMBA implemented the IDA package from

SUNDIALS [33] to solve the spatially discretised equations, while LionPower applied both the Jacobian-based and

the Jacobian-free methods to solve the temporally and spatially discretised non-linear equations. As a commercial

model, details of GT-AutoLion are not available.

The performance of LionPower, LIONSIMBA, and GT-AutoLion is first compared by modelling the discharge

processes of a 12Ah LiFePO4/graphite battery with constant rates at an environmental temperature of 283.15 K. The

electrochemical data are listed in Table 1 with expressions for the conductivity of the electrolyte, the open-circuit

potentials and the entropy changes of both anode and cathode shown in Eqs. 68 to 72. In addition, both LionPower

and LIONSIMBA are evaluated by a set of Urban Dynamometer Driving Schedule (UDDS) data which well emulates

electrified powertrain systems. All the simulations in this work were carried out on a Windows laptop with Intel

i7-7820HK processor and 16.0 GB memory.

(68)κ = 1.2544 × 10−3ce(−8.2488 + 0.053248T − 2.9871 × 10−5T 2 + 2.6235 × 10−4ce − 9.3063 × 10−6ceT + 8.069
× 10−9ceT 2 + 2.2002 × 10−7c2

e − 1.765 × 10−10c2
eT )2

(69)
Un = 0.6379 + 0.5416exp (−305.5309θn) + 0.044tanh

(
0.1958 − θn

0.1088

)
− 0.1978tanh

(
θn − 1.0571

0.0854

)
− 0.6875tanh

(
θn − 0.0117

0.0529

)
− 0.0175tanh

(
θn − 0.5692

0.0875

)
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Table 1: Parameters used in the electrochemical-thermal modelling.

Parameter
Negative
current

collector

Negative
electrode
(anode)

Separator
Positive
electrode
(cathode)

Positive
current

collector
Ref.

L (m) 9 × 10−6 5.9 × 10−5 2 × 10−5 9.2 × 10−5 1.6 × 10−5 [41]

Rs (m) - 1.475 × 10−5 - 1.15 × 10−6 - [41]

εs - 0.56 - 0.435 - [42]

εe - 0.3 0.4 0.28 - [41]

cs,max (mol/m3) - 31370 - 22806 - [42]

ce0 (mol/m3) - 1000 1000 1000 - [41]

Ds (m2/s) - 3.9 × 10−14 - 1.25 × 10−15 - [41]

EaD (J/mol) - 3.5 × 104 - 3.5 × 104 - [42, 43]

De (m2/s) - 10−8.43−54.0/(T−229−0.005ce)−2.2×10−4ce - [44]

σ (S/m) - 100 - 0.5 - [45, 46]

κ (S/m) - Eq. 68 - [47]

k (mola/mb/s) - 3 × 10−11 - 1.4 × 10−12 - [48, 49]

Eak (J/mol) - 2 × 104 - 3 × 104 - [42, 50]

α - 0.5 - 0.5 - assumed

γ - 1.5 1.5 1.5 - assumed

ρ (kg/m3) 8900 2500 1200 1500 2700 [51]

cp (J/mol/K) 385 800 800 800 897 [51]

λ (W/m/K) 401 1.04 1 1.48 237 [52]

U (V) - Eq. 69 - Eq. 70 - [42]

∂U/∂T (V/K) - Eq. 71 - Eq. 72 - [46]

t+ 0.363 [45]

h (W/m2/K) 20 assumed

Tre f (K) 298.15 -

Tamb (K) 283.15 assumed

R (J/mol/K) 8.314 -

F (C/mol) 96487 -

(70)
Up = 3.4323 − 0.4828exp

[
−80.2493

(
1

− θp

)1.3198
]
− 3.2474 × 10−6exp

[
20.2645

(
1 − θp

)3.8003
]

+ 3.2482 × 10−6exp
[
20.2646

(
1 − θp

)3.7995
]

(71)
∂Un

∂T
= 344.1347148

exp (−32.9633287θn + 8.316711484)
1 + 749.0756003exp (−34.79099646θn + 8.887143624)

− 0.8520278805θn + 0.362299229θ2
n + 0.2698001697
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(72)
∂Up

∂T
= −0.35376θ8

p + 1.3902θ7
p − 2.2585θ6

p + 1.9635θ5
p − 0.98716θ4

p

+ 0.28857θ3
p − 0.046272θ2

p + 0.0032158θp − 1.9186 × 10−5

4.1. Comparison among LionPower, LIONSIMBA and GT-AutoLion under constant rates

The discharge data of the 12Ah LiFePO4/graphite battery with 1C and 2C rates at 283.15 K were modelled by

LionPower and LIONSIMBA, as shown in Fig. 4(a). It is apparent that the overall trends of the discharge are well

captured by both LionPower and LIONSIMBA, but noticeable discrepancies exist between the measurements and the

simulations. The discrepancies mainly come from the following aspects. First, the chemical, physical, and electro-

chemical parameters used in the simulations are collected from the literature, which may not be fully representative

of the battery in our experiments. A similar level of discrepancy can be found in [53] which used the same set of

parameters to model LiFePO4 batteries. In addition, the standard electrochemical-thermal battery model may not be

sufficient to model modern batteries, even with carefully measured parameters [54]. Although Chen et al. [54] devel-

oped experimental techniques to parametrize a battery model, tuning is still required to match the measured voltage

profile. Note that adjustments were only made to the stoichiometry ranges of anode and cathode, together with the

cross-section area in this work, which are given by θn ∈ [0.012, 0.9656], θp ∈ [0.06, 0.92], and 0.5854 m2. With

the same set of the battery parameters, the modelling results from LionPower agree very well with those from LI-

ONSIMBA, which validates our model. The JFNK solver was applied to model these measurements as well, which,

not surprisingly, produces almost identical modelling results to the default Jacobian-based solver in LionPower, as

shown in Fig. 4(a). To compare the thermal modelling of LionPower and LIONSIMBA, the initial temperature of the

battery is set to 298.15 K and the thermal stabilisation to the environmental temperature 283.15 K is modelled. Fig.

4(b) compares the modelled average temperatures from LionPower and LIONSIMBA at 1C discharge rate and close

agreement is observed between these two models.

Despite the similarity between the modelling results from LionPower and LIONSIMBA, the discrepancy is no-

ticeable towards the end of the simulation in Fig. 4(a). To analyse the discrepancy at a representative time of 3500 s

which is marked by a vertical dashed grey line in Fig. 4(a), the modelled mole concentrations of lithium-ion in the

solid phase in both anode and cathode with 1C discharge rate from LionPower and LIONSIMBA are compared in Fig.
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(a)

(b)

Figure 4: The measured voltages of the 12 Ah LiFePO4 battery with 1C and 2C discharge rates at 283.15 K and the
modelled (a) voltages and (b) temperatures by LionPower and LIONSIMBA.
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5. It is clear that more lithium-ions migrate from anode to cathode in LionPower than in LIONSIMBA, which leads to

the difference in Fig. 4(a) based on the open-circuit potentials expressed in Eqs. 69 and 70. The different distributions

of lithium-ions in these two models result from the modelling of spherical diffusion. A further comparison is made by

evaluating the property of mass conservation of the spherical diffusion in the solid phase in these two models. Mass is

conserved when the change of number of moles inside a particle corresponds to the net molar flux via the boundaries

of the particle in the absence of source terms, which is expressed as

ˆ̇n =

∑
Vi
∂ci

∂t
+ jR2

s

‖ j‖R2
s

(73)

where Vi is the volume of shell i (divided by 4π) in Fig. 2, and ˆ̇n = 0 when the mass is conserved. The normali-

sation by ‖ j‖R2
s helps to reveal the relative error. Eq. 73 is evaluated by the modelling results from LionPower and

LIONSIMBA, and the computed values are compared in Fig. 6. It is apparent that the computed mass imbalances

from LionPower are negligible compared with those from LIONSIMBA in all particles from both anode and cathode.

Since LionPower applies the conservative scheme to discretise the spherical diffusion equation, its ˆ̇n on both anode

and cathode are approximately five orders of magnitude smaller than those from LIONSIMBA which uses a high-

order finite difference scheme. Therefore, it is preferable to use LionPower in fundamental studies where conserved

spherical diffusion is critical.

The computational time for the 1C discharge modelling of the LiFePO4/graphite battery by LionPower and LI-

ONSIMBA is compared in Table 2. LionPower is slower than LIONSIMBA under constant rates, and the former

with the Jacobian-based solver takes 138 s to complete the modelling of 1C discharge, while the latter only requires

17 s. With the implementation of the JFNK solver in LionPower, the simulation time then increases to 414 s. The

difference in computational time is caused by different numerical approaches used in solving the discretised equation-

s. LIONSIMBA applies the IDA solver from SUNDIALS, which solves the equations with adaptive time step under

constant charge/discharge rates. In comparison, LionPower solves the equations at all sampling points from the mea-

surements. With constant charge/discharge rates, integrators for DAEs are much more efficient than numerical solvers

for discretised algebraic equations. However, charge/discharge processes with constant rates are not representative of
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(a) Anode, LionPower (b) Anode, LIONSIMBA

(c) Cathode, LionPower (d) Cathode, LIONSIMBA

Figure 5: Contours of mole concentration of Li+ in the solid phase in both anode and cathode of the 12 Ah LiFePO4
battery with 1C discharge rate at 3500 s modelled by LionPower and LIONSIMBA.

Figure 6: The normalised net change of mole in particles of anode and cathode in the 12 Ah LiFePO4 battery with 1C
discharge rate at 3500 s modelled by LionPower and LIONSIMBA. Note that the orders of magnitude of ˆ̇nan and ˆ̇nca

from LionPower are 10−10 and 10−8, respectively, which cannot be viewed on the current scale.
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electrified powertrain systems and LionPower is mainly developed for those applications, which will be discussed in

a later section.

Table 2: The computational time required by LionPower and LIONSIMBA to model the 1C discharge of the 12Ah
LiFePO4/graphite battery.

Model Time (s)

LionPower, fsolve 138

LionPower, JFNK 414

LIONSIMBA 17

As a recently released commercial model by Gamma Technologies, GT-AutoLion has a comprehensive elec-

trochemical materials database and can seamlessly be integrated into the modelling of powertrain systems. Mean-

while, new features are constantly added to GT-AutoLion to improve its performance and usability. In the latest

official release, the stoichiometry ranges of anode and cathode are automatically determined based on the detailed

battery geometry and specifications, and it is currently not possible to directly change these ranges without care-

fully balancing the capacities of both anode and cathode. In this case, LionPower and LIONSIMBA were set to

apply the auto-determined stoichiometry ranges from GT-AutoLion for the ease of comparison, which are given by

θn ∈ [0.035, 0.844] and θp ∈ [0.059, 0.936]. Furthermore, the lower limit of battery voltage is adjusted to 2.8 V, as

defined by the stoichiometry ranges.

The modelled battery voltages from LionPower, LIONSIMBA, and GT-AutoLion at 1C discharge rate are com-

pared in Fig. 7. Note that the relatively short discharge time is due to the increased lower cut-off voltage from 2.5 V

to 2.8 V imposed by GT-AutoLion. It is clear that the one from GT-Autolion is higher than those from LionPower and

LIONSIMBA at the early discharge stage. Since the detailed mole concentrations of lithium-ion in the solid phase are

not directly available in the output of the current GT-AutoLion, it is difficult to carry out a comprehensive analysis

of the modelling results. In this case, the surface SOC of cathode particles is compared in Fig. 8 to illustrate the

difference among these three models. Initially, the evolution of surface SOC is similar among the three, but a larger

spatial gradient is observed in GT-AutoLion at the later stage, while the results from LionPower and LIONSIMBA

are similar. The large spatial gradient seems to suggest lithium-ions tend to aggregate in the particles adjacent to the

separator and migrate slowly to those that are further away, which might be caused by different numerical schemes

25



used in GT-AutoLion.

Figure 7: The comparison of modelling results of 1C discharge by LionPower, LIONSIMBA, and GT-AutoLion with
the lower cut-off voltage of 2.8 V imposed by GT-AutoLion. The stoichiometry ranges of anode and cathode used in
the modelling are automatically determined by GT-AutoLion.
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(a) Surface stoichiometry, GT-AutoLion (b) Surface stoichiometry, LionPower

(c) Surface stoichiometry, LIONSIMBA

Figure 8: Spatial and temporal evolution of the surface SOC of the cathode modelled by GT-AutoLion, LionPower,
and LIONSIMBA.
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4.2. Comparison between LionPower and LIONSIMBA under UDDS

As mentioned previously, LionPower is mainly developed for the studies of electrified powertrain systems and it

is of interest to evaluate its performance using the UDDS data as shown in Fig. 9(a). For comparison, LIONSIMBA

was also applied to model the UDDS data based on its example script for the continuous custom current profile.

(a)

(b)

Figure 9: (a) The measured fast-changing time-dependent charge/discharge currents and (b) corresponding voltages
from both measurements and simulations under UDDS.

The measured UDDS voltage, together with the modelling results from LionPower and LIONSIMBA are com-

pared in Fig. 9(b). Both models well predict the oscillations of UDDS voltages but with consistent discrepancies
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which can be viewed clearly from the zoomed-in plot. This discrepancies are in line with the comparisons shown in

Fig. 4(a). LionPower performs slightly better than LIONSIMBA in modelling the UDDS data, as indicated by the

R2 values in Fig. 9(b). As expected, the modelled voltage by the JFNK method overlaps with the result from the

Jacobian-based solver in LionPower.

Although the modelled voltages from both models are similar, LIONSIMBA is much slower than LionPower in

modelling the UDDS data, as shown in Table 3. It takes LionPower 45 s to complete the simulation with the Jacobian-

based solver and 84 s with the JFNK method, but the computational time increases by two orders of magnitude to

6218 s when using LIONSIMBA. Note that LIONSIMBA requires a Jacobian matrix with a representative current

density as an input for the following simulation of the custom current profile, and the modelling may fail to converge

if the selected representative current density is not desirable. By trial and error, LIONSIMBA converges with 8 A/m2

as the representative current density. Although preconditioned Krylov iterative linear solvers are available in the IDA

package from SUNDIALS, they are not currently implemented in LIONSIMBA to solve the problems with continuous

custom current profiles. It is apparent that the present LIONSIMBA is not suitable for modelling fast-changing and

time-dependent charge/discharge current profiles. In comparison, LionPower allows direct control of the time step

and converges quickly at each time point, and is thus preferable for the modelling of powertrain systems.

Table 3: The computational time required by LionPower and LIONSIMBA to model the UDDS data.

Model Time (s)

LionPower, fsolve 45

LionPower, JFNK 84

LIONSIMBA 6218

Based on the comparison of the computational time, the Jacobian-based solver in LionPower, which relies on the

Symbolic Math Toolbox and fsolve in MATLAB, outperforms the JFNK solver. However, the Jacobian-based solver

becomes less efficient with an increased number of state variables which could come from either a very fine mesh

in the battery modelling or a hybrid electric powertrain model comprising a kinetic sub-model of engine combustion

[34]. In these situations, it is desirable to apply the JFNK method which is designed to solve large-scale problems.

Since LionPower is developed for the research of electrified powertrain systems, the inclusion of the JFNK solver is
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critical for future modelling works at the system-level.

5. Conclusions

This work applied the mass-conserved control volume method to discretise the spherical diffusion equation and the

finite volume method for the rest differential equations in the electrochemical-thermal battery model. Both Jacobian-

based and Jacobian-free solvers were implemented in this work to solve the discretised, non-linear equations in an

efficient manner, especially for the modelling of real-world driving cycles from electrified powertrains.

Comparisons were first made among LionPower, LIONSIMBA, and GT-AutoLion in modelling the discharge

processes with constant rates. Both LionPower and LIONSIMBA reasonably capture the measured battery voltages.

Furthermore, it was found that LionPower achieves mass conservation of the spherical diffusion with the control

volume method, the mass imbalances of which are five orders of magnitude smaller than those of LIONSIMBA.

Under constant rates, the computational time taken by LIONSIMBA is shorter than that with LionPower, as the former

applies adaptive time step in the modelling, while the latter sticks to a fixed time step. Compared with LionPower and

LIONSIMBA, the commercial model GT-AutoLion behaves slightly differently in the temporal and spatial evolution

of surface SOC, which is probably caused by different numerical schemes used in GT-AutoLion. Further comparison

between LionPower and LIONSIMBA was carried out based on the UDDS data representing real-world driving cycles.

The overall trend of the UDDS data is well reproduced by both models but with consistent discrepancies which were

also observed in the early simulations with constant discharge rates. The UDDS data challenge the performance of

LIONSIMBA which takes two orders of magnitude longer computational time to complete the modelling compared

with LionPower, indicating LionPower is more preferable to be applied in modelling real-world driving cycles of

electrified powertrains.

As a battery model completely based on MATLAB, it is convenient to integrate LionPower as a sub-model in ex-

isting powertrain models which are commonly built in the MATLAB/Simulink modelling environment. The Jacobian-

based method is mainly applied in the modelling of pure electric powertrains with a not too fine mesh, since MATLAB

is not very efficient in formulating a large Jacobian matrix. In comparison, the Jacobian-free method can handle a

fine mesh and is applicable in modelling hybrid electric powertrain systems comprising sub-models for both batteries
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and engines. Future developments of LionPower may include applying MATLAB’s integrator ode15s when mod-

elling charge/discharge processes with constant rates, coupling a comprehensive, physics-based degradation model,

and formulating efficient, function-based preconditioners to parallelise the JFNK method.

List of Symbols

as Specific interfacial surface area (1/m)

ce Mole concentration of lithium-ion in the liquid phase (mol/m3)

ce0 Initial mole concentration of lithium-ion in the liquid phase (mol/m3)

cp Specific heat capacity (J/mol/K)

cs Mole concentration of lithium-ion in the solid phase (mol/m3)

cs,max Maximum mole concentration of lithium-ion in the solid phase (mol/m3)

cs,sur f Mole concentration of lithium-ion on the surface of particle (mol/m3)

De Diffusion coefficient of lithium-ion in the liquid phase (m2/s)

Ds Diffusion coefficient of lithium-ion in the solid phase (m2/s)

EaD Activation energy for solid phase diffusion (J/mol)

Eak Activation energy of electrochemical reaction (J/mol)

F Faraday constant (C/mol)

f± Average molar activity coefficient

h Heat transfer coefficient (W/m2/K)

I Charge/discharge current flux (A/m2)

j Molar flux (mol/m2/s)

j̄ Averaged molar flux (mol/m2/s)

k Rate constant (mola/mb/s) (a and b depends on the reaction)

L Length in the x direction (m)

q Volumetric heat generation rate (W/m3)

R Gas constant (J/mol/K)
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Rs Radius of solid particle (m)

r Radial distance of particle (m)

T Temperature (K)

Tre f Reference temperature (K)

t Time (s)

t+ Transference number

U Open-circuit potential (V)

x 1D spatial distance (m)

Greek Symbols

α Transfer coefficient

γ Bruggeman exponent

εe Volume fraction in the liquid phase

εs Volume fraction in the solid phase

η Overpotential (V)

θ SOC of electrode

κ Conductivity of the electrolyte (S/m)

λ Thermal conductivity (W/m/K)

ρ Density (kg/m3)

σ Conductivity of the electrode (S/m)

φe Potential in the liquid phase (V)

φs Potential in the solid phase (V)

Subscripts

n Negative electrode

ncc Negative current collector

p Positive electrode
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pcc Positive current collector

sep Separator
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