50 research outputs found

    Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality

    Full text link
    In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph-where features are the nodes-the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigen-vector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data and object recognition, among others), and compared against filter, embedded and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time.Comment: Preprint version - Lecture Notes in Computer Science - Springer 201

    Online Feature Selection for Visual Tracking

    Get PDF
    Object tracking is one of the most important tasks in many applications of computer vision. Many tracking methods use a fixed set of features ignoring that appearance of a target object may change drastically due to intrinsic and extrinsic factors. The ability to dynamically identify discriminative features would help in handling the appearance variability by improving tracking performance. The contribution of this work is threefold. Firstly, this paper presents a collection of several modern feature selection approaches selected among filter, embedded, and wrapper methods. Secondly, we provide extensive tests regarding the classification task intended to explore the strengths and weaknesses of the proposed methods with the goal to identify the right candidates for online tracking. Finally, we show how feature selection mechanisms can be successfully employed for ranking the features used by a tracking system, maintaining high frame rates. In particular, feature selection mounted on the Adaptive Color Tracking (ACT) system operates at over 110 FPS. This work demonstrates the importance of feature selection in online and realtime applications, resulted in what is clearly a very impressive performance, our solutions improve by 3% up to 7% the baseline ACT while providing superior results compared to 29 state-of-the-art tracking methods

    Infinite Latent Feature Selection: A Probabilistic Latent Graph-Based Ranking Approach

    Get PDF
    Feature selection is playing an increasingly significant role with respect to many computer vision applications spanning from object recognition to visual object tracking. However, most of the recent solutions in feature selection are not robust across different and heterogeneous set of data. In this paper, we address this issue proposing a robust probabilistic latent graph-based feature selection algorithm that performs the ranking step while considering all the possible subsets of features, as paths on a graph, bypassing the combinatorial problem analytically. An appealing characteristic of the approach is that it aims to discover an abstraction behind low-level sensory data, that is, relevancy. Relevancy is modelled as a latent variable in a PLSA-inspired generative process that allows the investigation of the importance of a feature when injected into an arbitrary set of cues. The proposed method has been tested on ten diverse benchmarks, and compared against eleven state of the art feature selection methods. Results show that the proposed approach attains the highest performance levels across many different scenarios and difficulties, thereby confirming its strong robustness while setting a new state of the art in feature selection domain.Comment: Accepted at the IEEE International Conference on Computer Vision (ICCV), 2017, Venice. Preprint cop

    Local Geometry Processing for Deformations of Non-Rigid 3D Shapes

    Get PDF
    Geometry processing and in particular spectral geometry processing deal with many different deformations that complicate shape analysis problems for non-rigid 3D objects. Furthermore, pointwise description of surfaces has increased relevance for several applications such as shape correspondences and matching, shape representation, shape modelling and many others. In this thesis we propose four local approaches to face the problems generated by the deformations of real objects and improving the pointwise characterization of surfaces. Differently from global approaches that work simultaneously on the entire shape we focus on the properties of each point and its local neighborhood. Global analysis of shapes is not negative in itself. However, having to deal with local variations, distortions and deformations, it is often challenging to relate two real objects globally. For this reason, in the last decades, several instruments have been introduced for the local analysis of images, graphs, shapes and surfaces. Starting from this idea of localized analysis, we propose both theoretical insights and application tools within the local geometry processing domain. In more detail, we extend the windowed Fourier transform from the standard Euclidean signal processing to different versions specifically designed for spectral geometry processing. Moreover, from the spectral geometry processing perspective, we define a new family of localized basis for the functional space defined on surfaces that improve the spatial localization for standard applications in this field. Finally, we introduce the discrete time evolution process as a framework that characterizes a point through its pairwise relationship with the other points on the surface in an increasing scale of locality. The main contribute of this thesis is a set of tools for local geometry processing and local spectral geometry processing that could be used in standard useful applications. The overall observation of our analysis is that localization around points could factually improve the geometry processing in many different applications

    Learning disentangled representations via product manifold projection

    Full text link
    We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations. Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds. This definition of disentanglement gives rise to a novel weakly-supervised algorithm for recovering the unknown explanatory factors behind the data. At training time, our algorithm only requires pairs of non i.i.d. data samples whose elements share at least one, possibly multidimensional, generative factor of variation. We require no knowledge on the nature of these transformations, and do not make any limiting assumption on the properties of each subspace. Our approach is easy to implement, and can be successfully applied to different kinds of data (from images to 3D surfaces) undergoing arbitrary transformations. In addition to standard synthetic benchmarks, we showcase our method in challenging real-world applications, where we compare favorably with the state of the art.Comment: 15 pages, 10 figure

    Feature Selection via Eigenvector Centrality

    Get PDF
    In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph - where features are the nodes - the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigenvector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data, object recognition, among others), and compared against filter, embedded, and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time

    Infinite feature selection: a graph-based feature filtering approach

    Get PDF
    We propose a filtering feature selection framework that considers a subset of features as a path in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse setups with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known yet effective comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process

    Smoothness and effective regularizations in learned embeddings for shape matching

    Full text link
    Many innovative applications require establishing correspondences among 3D geometric objects. However, the countless possible deformations of smooth surfaces make shape matching a challenging task. Finding an embedding to represent the different shapes in high-dimensional space where the matching is easier to solve is a well-trodden path that has given many outstanding solutions. Recently, a new trend has shown advantages in learning such representations. This novel idea motivated us to investigate which properties differentiate these data-driven embeddings and which ones promote state-of-the-art results. In this study, we analyze, for the first time, properties that arise in data-driven learned embedding and their relation to the shape-matching task. Our discoveries highlight the close link between matching and smoothness, which naturally emerge from training. Also, we demonstrate the relation between the orthogonality of the embedding and the bijectivity of the correspondence. Our experiments show exciting results, overcoming well-established alternatives and shedding a different light on relevant contexts and properties for learned embeddings
    corecore