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Yet on the other hand it is certain that
mathematics generally, and particularly

geometry, owes its existence to the need
which was felt of learning something about

the relations of real things to one another.
The very word geometry, which, of course,

means earth-measuring, proves this.

ALBERT EINSTEIN

“Geometry and Experience”, 1922





Sommario

Nella vita reale incontriamo spesso oggetti non rigidi che si manifestano
con configurazioni molto variabili. Le diverse posizioni assunte da un
corpo umano sono un chiaro esempio. Queste deformazioni delle forme
3D non rigide complicano notevolmente l’analisi di superfici geometriche
ricavate da oggetti reali. Dovendo affrontare variazioni locali, distorsioni
e deformazioni parziali risulta complicato analizzare le forme nella loro
globalità. Per questo motivo, negli ultimi decenni, numerosi strumenti
sono stati proposti per l’analisi locale di immagini, grafi, forme e superfici.
A differenza dei metodi globali l’analisi locale si focalizza sulle proprietà
di ciascun punto e del suo intorno locale.
In questo manoscritto proponiamo quattro nuovi approcci locali per af-
frontare le problematiche generate da tali deformazioni migliorando la
descrizione puntuale delle superfici che rappresentano oggetti reali. Par-
tendo da questi metodi di analisi locale, proponiamo una serie di stru-
menti applicativi e risvolti teorici legati alla geometria locale degli oggetti.
Più precisamente, estendiamo la Windowed Fourier Transform dal caso
standard di segnali definiti su domini Euclidei a versioni specificamente
costruite per superfici. Inoltre proponiamo una nuova base locale per gli
spazi funzionali definiti sulle superfici che migliorano la localizzazione
dell’analisi di segnali su questi domini. Infine introduciamo i processi
evolutivi a tempo discreto, uno strumento che caratterizza i punti at-
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traverso le loro relazioni con gli altri punti sulla superficie. Il contributo
di questa tesi è costituito dall’insieme di strumenti per l’analisi locale di
superfici osservando come l’analisi di forme possa arricchirsi di tale loca-
lizzazione.



Abstract

Geometry processing and in particular spectral geometry processing deal
with many different deformations that complicate shape analysis prob-
lems for non-rigid 3D objects. Furthermore, pointwise description of sur-
faces has increased relevance for several applications such as shape cor-
respondences and matching, shape representation, shape modelling and
many others. In this thesis we propose four local approaches to face the
problems generated by the deformations of real objects and improving the
pointwise characterization of surfaces. Differently from global approaches
that work simultaneously on the entire shape we focus on the properties of
each point and its local neighborhood. Global analysis of shapes is not
negative in itself. However, having to deal with local variations, distor-
tions and deformations, it is often challenging to relate two real objects
globally. For this reason, in the last decades, several instruments have been
introduced for the local analysis of images, graphs, shapes and surfaces.
Starting from this idea of localized analysis, we propose both theoretical
insights and application tools within the local geometry processing do-
main. In more detail, we extend the windowed Fourier transform from the
standard Euclidean signal processing to different versions specifically de-
signed for spectral geometry processing. Moreover, from the spectral geo-
metry processing perspective, we define a new family of localized basis
for the functional space defined on surfaces that improve the spatial lo-
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calization for standard applications in this field. Finally, we introduce the
discrete time evolution process as a framework that characterizes a point
through its pairwise relationship with the other points on the surface in
an increasing scale of locality. The main contribute of this thesis is a set
of tools for local geometry processing and local spectral geometry process-
ing that could be used in standard useful applications. The overall obser-
vation of our analysis is that localization around points could factually
improve the geometry processing in many different applications.
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1

Introduction

1.1 Geometry processing

Geometry processing, is a recent field of research that uses concepts
from mathematics, computer science and engineering to design efficient
algorithms and tools for the processing and the analysis of geometric
data.
In the last decades the interest in this discipline has greatly grown. This is
due to increased technology and available devices in an ever wider range
that allow the acquisition and generation of many geometric data from
the reality. Geometric data can represent many different objects. Gener-
ally they encode surfaces, as two-dimensional manifolds embedded in
a three-dimensional space. Thus we can say that the standard objects
of study of geometry processing are all the possible objects that we can
meet in the reality of every day.
In this thesis, we will refer to shapes as any kind of discrete or digital rep-
resentation of surfaces. In the era of multimedia and automation, is nec-
essary to allow computers to analyze, explore and learn about the world
of real objects.
Applications of geometry processing algorithms already cover a wide
range of areas from multimedia, entertainment and classical computer-
aided design, to biomedical computing, reverse engineering and scien-
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tific computing. Some of these applications are acquisition, reconstruc-
tion, analysis, manipulation, simulation and transmission of complex 3D
models.
Under this perspective, numerous traditional tools of mathematics and
geometry can be adapted in order to investigate properties of shapes.
This is the spirit of the work presented in this thesis, and geometry pro-
cessing is the wide field to which this thesis belongs.

1.2 Deal with deformations

Working with shapes, seen as digital representation of objects from real
world we have to deal with many issues. Leaving aside the problems re-
lated to representation, which are not addressed in this thesis, we still
have to face many issues related to deformations. Indeed in the reality of
every day, the same object or the same class of objects could be find in
different deformed versions.
As a first example we can find a glass resting on a table or upside down.
In the digital representation we would like to be able to understand that
they are the same object and recognize the deformation between them.
This is an example of rigid deformation, which means that the two ob-
jects are exactly the same object and they are related by a rigid motion or
rigid transformations in R3. The real world is not rigid, most of the shapes
can manifest themselves in different poses that differ for a non rigid de-
formation. An example of this is easily obtained replacing the glass with
a cat on the table, and thinking to the multitude of positions that the cat
can take. Among the non rigid deformations we can identify two sub-
classes: isometric and non isometric deformations. With isometric defor-
mation or intrinsic isometry we indicate a transformation between two
shapes that preserves the distances induced by the metrics of the sur-
faces. With a more mathematical rigour we can say:
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Definition 1.1. Let M and N be two compact Riemannian surfaces with-
out boundary, a map T : M → N that is surjective is an isometric de-
formation or intrinsic isometry if and only if ∀x, y ∈ M , dM (x, y) =
dN (T (x),T (y)). Where dM (·, ·) and dN (·, ·) are distances induced by the
Riemannian metric respectively on M and on N .

A non isometric deformation is a deformation which is not an isome-
try. The distances induced by the Riemannian metric are called Geodesic
distances. The geodesic distance between two points x, y ∈ M can be
thought as the minimum length of the paths connecting x to y and be-
longing to M . Intrinsic means that a definition or a quantity can be fully
expressed in terms of the metric of the surface, and so it is independent
from the embedding. Conversely we indicate with extrinsic all stuff that
are related with the embedding. In the next Chapter an introduction to
Remannian geometry and some reference about this topic will be given.
For simplicity in this thesis we will not worry about the surjectivity of the
map T and we will refer to T as an isometry (by omitting intrinsic) when
T preserves geodesic distances. In the discrete representation of the real
world, we usually deal with near isometric deformation, that is a defor-
mation that is close to an isometric deformation but for some points or
regions does not completely preserve the isometry. Among the non iso-
metric deformation we have many types of deformations such as topo-
logical deformations, scale deformations, and others that it is possible to
see in real world or in its discrete representation.

1.3 Need for locality

Due to this large amount of deformations we can meet working with
non-rigid 3D real objects, it is not easy to analyze the shape entirely, be-
cause a surface and its deformations can be very different when viewed
globally.
In the same way limitations in the acquisition of real data often generate
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different types of noise such as topological errors, partial views, missing
parts, widespread noise on the surface just to list some of them. All this
errors are usually localized on some regions or around some points. A
global approach in the comparison of shapes may be very subject to the
presence of these kinds of error and at the same time global approach
makes these errors impossible to be localized.
Furthermore in many standard applications of geometry processing the
attention for pointwise and localized analysis is increased. Indeed the
global analysis of shapes has some clear limitations. As example consider
two isometric deformations of a given human shape in which harms and
legs are in different positions. In many applications such as animation
and anatomical studies, being able to separate these deformations is ab-
solutely desirable. From a global point of view it is impossible to sepa-
rate the harms from the legs deformations. A correspondence between
points, or a subdivision of the shapes in local semantically consistent
segments make the distinction between the different deformations pos-
sible. The local approach is also related with the Riemannian surfaces
that we adopt for representing 3D non-rigid objects. Indeed the defini-
tion of Riemannian surface is strictly related to a local characterization
of the surface, and it describes each point through its neighborhoods.
Also in discrete settings the localized analysis is used to improve the rep-
resentation of data, as done as example in [35], where many different ad-
vantages given by the localized analysis of discrete data are shown.
Gathering together all these reasons we believe that in the geometry pro-
cessing there is a clear need for localization. With localization we mean
a set of theoretical insights and practical methods which reinforces and
permits localized analysis of surfaces.
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1.4 Our goals and contributions

Localized analysis on shapes is a task of great interest in geometry pro-
cessing. This interest is mainly due to the importance of a pointwise
characterization and description of shapes in several applications and
problems. Real objects are subject to a countless number of deforma-
tions. It can be not easy to deal with these deformations if we look at the
shapes globally. The local analysis can help to face the problems caused
by these deformations.
Therefore, the main goal of this thesis is to improve the localized analysis
and description of shapes. Our final objective is to produce theoretically
sound tools for the localized analysis of deformable surfaces, in order to
be more robust with respect to several deformations of the shapes and
being more informative with respect to the properties of points and their
neighborhoods.
From the theoretical point of view our contributions is fourfold:

1. Given a pair of shapes we propose a new functional kernel which al-
lows the comparison of shapes using only their functional represen-
tations.

2. We extend the definitions of some standard signal processing tools
on surface domain such as the windowed Fourier transform and its
anisotropic version that is strictly related with Gabor transform.

3. We introduce a new family of basis which could be localized on the
spatial domain allowing us to obtain a good spectral localization to-
gether with a good spatial localization and improving the representa-
tion of signals defined on manifolds.

4. We define the discrete time evolution process on surfaces.

From the practical side, we investigate how these new methods could
be used in different applications. We adopt the functional kernel to the
brain surfaces classification in order to detect diseases among the a-
nalyzed subjects. We exploit a biclustering technique to find stable re-
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gions between shapes. We derive point descriptors for the point-to-point
matching from the windowed Fourier transform, its anisotropic version
and from the discrete time evolution process framework. From the ani-
sotropic windowed Fourier transform we also obtain a salient point de-
tector and a new stable method for shape segmentation. We show how
our localized basis for spectral geometry processing can improve spectral
shape processing and the shape correspondence applications. Finally we
test how the operator derived from the discrete time evolution process
can improve the shape correspondence. We expect that these tools and
the related theory can be involved to improve many geometry process-
ing applications such as shape retrieval, shape correspondences, shape
segmentation, shape modelling and many others.

1.5 Outline

The rest of this thesis is organized as follows: In Chapter 2 an overview
of the main subjects is given. More precisely we focus on the theoretical
basis of this thesis: signal processing, differential geometry, discrete rep-
resentation and spectral differential geometry as the confluence of the
three previous ones. At the end of Chapter 2 the point-to-point matching
is presented as the main application faced in this thesis together with the
datasets used in the experiments.
Chapter 3 is dedicated to diffusion process as an example of local analy-
sis on surfaces. Diffusion process allows us to introduce heat kernel sig-
nature, wave kernel signature and the optimal shape descriptor.
These two Chapters are introductory to our contribution, which is in-
stead completely contained in the following Chapters. An overview of the
Functional maps framework is given at the beginning of Chapter 4. The
original framework is then improved using the new stable region indica-
tor functions obtained from our biclustering technique. Our functional
kernel for brain classification, a new application of the functional maps,
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is introduced at the end of this Chapter. In Chapter 5 we extend the win-
dowed Fourier transform tools to surfaces allowing the localized spectral
geometry processing. The localized manifold harmonics, our localized
basis for spectral geometry processing concludes this Chapter. Discrete
time evolution process on surfaces is introduced in Chapter 6, accompa-
nied by an analysis on the localization in a non spectral geometry pro-
cessing approach. Finally Chapter 7 summarized the conclusions of this
thesis and possible future works that may arise from it.





2

Background

In Chapter 1 we have already given a general overview of the topics cov-
ered in this thesis. In this Chapter we introduce the theoretical background
that is required to understand our original contribution. In the last Section
2.5 of this Chapter many notation an data used in this thesis are intro-
duced.

2.1 Signal processing

Signal processing is a technology that covers important roles in many
different areas. Signal processing is the representation, the manipula-
tion and the transformation of signals. From an abstract point of view
a signal is a function that “ conveys information about the behaviour or
attributes of some phenomenon ”, [123]. From mathematical perspec-
tive signals are represented as functions of one or more independent
variables. In practice a signal is any physical behaviour or variation of
a quantity in some domain, such as in time domain or in space domain.
This domain is the set in which the independent variables of the func-
tion “signal” could vary. Some example of signal are music, video, image,
speech, radar and many others.
Signals are divided in two main categories: continuous and discrete sig-
nals. Continuous signals are defined on a continuous domain, i.e., the
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signal varies continuously with respect to its independent variables. Dis-
crete signals are instead defined on a discrete set or a discrete subset of
a continuous space. In this case the independent variables have discrete
values and so the signal is a discrete collection of values. Also the inde-
pendent variables could be continuous or discrete, so as the realized val-
ues of the function “signal” could be either continuous or discrete. Sig-
nal for which both the independent variables and the realized values are
discrete are said digital signals. In this thesis we mainly focus on discrete
signal and therefore the independent variables (one or more) belong to
a discrete domain. A complete and deep analysis of discrete signal pro-
cessing can be found in [113].

Signal processing importance is twofold, first due to wide diffusion of
signals in many applications, second signal processing solves many and
different problems involving signals.
One example of problem is Signal representation, which means the pro-
cess of transforming the original signal in a new version that possess cer-
tain properties. The new signal is a faithful representation of the original
one, which contains all the important original information. At the same
time the new signal has some properties that make it more useful, such
as for example compactness, homogeneity, simplicity and others.
Another important class of problems is Signal interpretation. The goal of
Signal interpretation is to obtain a characterization of the signal. The ob-
tained characterization highlights some content or property of the signal
that is not so evident in the original signal.
Manipulation and transformation of a signal is another family of prob-
lem faced by signal processing. The objective in this case is to create new
and unseen signals.

2.1.1 Fourier Transform

A key problem in signal processing is the choice of the representation
adopted for signals. The desired representation must be informative,
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concise and must allow and simplify operations on signals. Several rep-
resentations have been proposed, but in this work we will limit our anal-
ysis to the Fourier Transform. Its name is due to Joseph Fourier, which
in 1807 in the paper “Mémoire sur la propagation de la chaleur dans les
corps solides” [48], introduced and developed the theory of this trans-
form. The goal of Fourier was to study a way in which general functions
(signals) may be represented and approximated as linear combinations
of simpler functions. These simpler functions are typically trigonomet-
ric such as sines and cosines. Fourier was motivated by the search for a
simpler representation of heat transfer. Namely we refer to this represen-
tation as the Fourier transform also referred as the frequency representa-
tion of the original signal. In other words, if we have a signal defined on a
certain domain, such as time for sound, the Fourier transform represents
the signal into the frequencies that generate it.
More formally, in the continuous and 1-dimension case, given an inte-
grable function f : R −→ C we can define the Fourier transform of f as
follows:

f̂ (ω) =
∫ ∞

−∞
f (x)e−2πiωxd x (2.1)

The Fourier transform gives us a coefficient f̂ (ω) for every frequency ω ∈
R, which corresponds to the amount of that frequency in the analyzed
signal. The collection of these values f̂ = {

f̂ω
}
ω∈R is the representation in

the frequency domain of the original signal f .
Usually it is possible to define an inverse Fourier transform, which allows
the reconstruction of the original signal starting from its representation
in the frequency domain.

f (x) =
∫ ∞

−∞
f̂ (ω)e2πi xωdω (2.2)

The inverse Fourier transform is referred as Fourier synthesis.
Thanks to the Fourier transform is possible to find a direct connection
between some operations in the original domain and other operations
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in the frequency domain as we will see later in this Chapter.
Here we clarify how the Fourier transform allows us to represent func-
tions as linear combinations of simpler sines and cosines function. Than-
ks to the Euler’s formula sines and cosines can be rewritten as complex
exponential functions:

e2πi x = cos(2πx)+ i si n(2πx), ∀x ∈R. (2.3)

Replacing the exponential in Equation 2.1 with the last equivalence 2.3
we get the linear combinations of trigonometric functions.
A more general way to refer to this representation of functions is har-
monic analysis. The name harmonics is due to the ancient Greek word,
harmonikos, that means skilled in music. Harmonics is uses to indicate
waves whose frequencies are integer multiples of a fixed frequency. This
is the case of frequencies of music notes, that are indeed harmonics
waves. The use of harmonics has been generalized beyond its original
meaning in many other contexts.
Harmonics and music are strictly related with Fourier transform thanks
to the work of a famous physicist Ernst Chladni. In 1787 Chladni pub-
lished the book “Discoveries Concerning the Theories of Music”, in which
he proposed his experiments about the patterns that the sand assumes
if it is spread on a thin metal plate putting into vibration using a bow.
Briefly these patterns can be mathematically calculated solving the eigen-
decomposition of a standard operator.
Given an operator Q from a domain to itself, the eigendecomposition of
Q is given by the (possibly infinite) set of scalars (namely eigenvalues)
{λi }i and corresponding points in the given domain (namely eigenvec-
tors)

{
φi

}
i for which the following equation is verified:

Qφi =λiφi , ∀i (2.4)

The considered operator is the Laplace operator, a classical second or-
der differential operator. The eigenfunctions of the Laplace operator are
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exactly the harmonics used as basis of the Fourier transform. Just as a
historical remark, this relation between sound and Laplace eigenfunc-
tions leads to the question asked by Kac in 1966: Can we hear the shape
of a drum? [72].

2.1.2 Properties of the Fourier transform

In general several hard operations in the original domain of a signal can
be easily performed in the frequency domain, and the frequency repre-
sentation has many interesting properties. In the following we resume
some of these properties omitting proofs that go beyond the aims of this
thesis. A function f is a square-integrable function if

∫ ∞
−∞ | f (x)|2d x <∞.

For every square-integrable functions f ,g : R−→C, we define the convo-
lution between f and g as:

( f ∗ g )(x) =
∫ ∞

−∞
f (x)g (x − t )d t . (2.5)

Convolution can be viewed as a modified version of one of the original
functions, defined as a weighted average of the first function weighted by
a reversed and shifted version of the second function. For every square-
integrable functions f ,g : R −→ C, and their Fourier transform f̂ and ĝ
we have:

Linearity: if h(x) = a f (x)+bg (x) then (ĥ)(ω) = a f̂ (ω)+bĝ (ω), ∀a, b ∈C;

Translation shifting: if h(x) = f (x − x0) then ĥ(ω) = f̂ (ω)e−2πiωx0, ∀x0 ∈
R;

Modulation shifting: if h(x) = f (x)e2πiω0x then ĥ(ω) = f̂ (ω−ω0),∀ω0 ∈R;

Integration: f̂ (0) = ∫ ∞
−∞ f (x)e2πi 0xd x = ∫ ∞

−∞ f (x)d x, i.e. the value of f̂ (0)
is equal to the integral of f on its domain;
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Parseval’s formula:
∫ ∞
−∞ f (x)g (x)d x = ∫ ∞

−∞ f̂ (ω)ĝ (ω)dω;

Plancherel’s theorem:
∫ ∞
−∞ | f (x)|2d x = ∫ ∞

−∞ | f̂ (ω)|2dω, that follows direc-
tly from the Parseval’s formula. From Plancherel’s theorem we can said
that the Fourier transform preserves the energy of the original signal;

Convolution theorem: if h(x) = f (x)∗ g (x) then ĥ(ω) = f̂ (ω)ĝ (ω).

This latter property is a clear case in which a complicated operation such
as convolution is solved in the frequency domain as a simple product.
The convolution theorem will be very important in this thesis as we will
use this theorem to extend convolution from the classical case to more
generalized versions.
Another key property of the Fourier transform is the uncertainty princi-
ple. Without going into details this principle states that for a signal it is
not possible to have in the same time a localization in the original do-
main and a localization in the frequency domain. In other words if we
have a signal that is squeezed around some point in the original domain
then we have something more spread in the frequency domain. It is thus
impossible to arbitrarily concentrate both a function in its original do-
main and its Fourier transform in the frequencies domain.

2.1.3 Domain dimensionality and geometry

Signal processing is classically defined for one-dimensional signals, or
rather for functions of one independent variable with value in R. Stan-
dard examples of one-dimensional signal are sound that varies in time,
electric potential that varies along the points of a circuit. Most of the
signal processing theory and definitions are born in the context of one-
dimensional signals, that are more common and easy to control. Any-
way signal processing problems are not confined to one dimensional sig-
nals. Although there are some fundamental differences in the theory be-
tween one-dimensional and multi-dimensional signals most of the con-
cepts and techniques can be extended directly to multi-dimensional sig-
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nal processing. Another important extension is related to the geometry
of the domain on which signal are defined. In the classical case we have
a one or multi-dimensional euclidean domain on which operations and
measures are well defined. If we want to study signals on some non eu-
clidean domain, we have to face some issues generated by the different
geometry of the domain.

2.2 Differential geometry

2.2.1 Manifolds as non euclidean domain

A particular class of non euclidean domains is the one faced in this thesis:
2-dimensional surfaces embedded in R3. As we saw in Chapter 1 these
surfaces represent real objects and for simplicity we will refer to these
objects as shapes. We approximate and model a shape as a smooth com-
pact connected Riemannian surface M (possibly with a boundary ∂M )
embedded into R3. A complete and detailed introduction to manifolds is
out of the scope of this thesis. In the following we will introduce some
basic concepts and definitions that will be useful in our analysis. For a
deep introduction to Riemannian manifolds we refer the reader to [41].
Let M be a Riemannian manifold as previously described. We consider a
generic point x ∈ M . Locally around the point x, the manifold is home-
omorphic to the tangent space (or plane) TxM . The disjoint union of
all the tangent spaces is the tangent bundle T M . We further equip the
manifold M with a Riemannian metric, defined as an inner product
〈·, ·〉TxM : TxM ×TxM →R on the tangent space depending smoothly on
x. Properties expressed solely in terms of the metric are called intrinsic.
In particular, isometric (metric-preserving) deformations of the embed-
ded manifold preserve all intrinsic structures.

Let f : M →R and F : M → T M denote real scalar and tangent vector
fields on the manifold, respectively. We can define inner products as:
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〈 f , g 〉L2(M ) =
∫

M
f (x)g (x)dx; (2.6)

〈F,G〉L2(T M ) =
∫

M
〈F (x),G(x)〉TxM dx; (2.7)

where, dx is the area element induced by the metric. We denote by
L2(M ) = { f : M → R | 〈 f , f 〉2

L(M ) < ∞} the space of square-integrable
real functions on M .

Laplace-Beltrami operator.

In classical calculus, the notion of derivative describes how the value
of a function f changes with an infinitesimal change of its argument
x. Due to the lack of vector space structure on the manifold (meaning
that we cannot add two points, x +d x), we need to define the differen-
tial of f as an operator d f : T M → R acting on tangent vector fields. At
each point x, the differential is a linear functional d f (x) = 〈∇ f (x), · 〉TxM

acting on tangent vectors F (x) ∈ TxM , which model a small displace-
ment around x. The change of the function value as the result of this
displacement is given by applying the differential to the tangent vec-
tor, d f (x)F (x) = 〈∇M f (x),F (x)〉TxM , and can be thought as an exten-
sion of the notion of the classical directional derivative. The operator
∇M f : L2(M ) → L2(T M ) in the above definition is called the intrinsic
gradient, and is similar to the classical notion of the gradient defining
the direction of the steepest change of the function at a point.

The intrinsic divergence divM : L2(T M ) → L2(M ) is defined as an op-
erator adjoint to the intrinsic gradient, 〈F,∇M f 〉L2(T M ) = 〈−divM F, f 〉L2(M ),
where f ∈ L2(M ) and F ∈ L2(T M ) are some scalar and vector fields, re-
spectively.
The positive semi-definite Laplace-Beltrami operator (LBO) is defined as:

∆M f =−divM (∇M f ) ,

generalizing the corresponding notion of Laplace operator from Euclidean
spaces to manifolds. The Laplacian is self-adjoint,
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〈∇M f ,∇M g 〉L2(T M ) = 〈∆M f , g 〉L2(M ) = 〈 f ,∆M g 〉L2(M ). (2.8)

Geometrically, the Laplace-Beltrami operator can be interpreted as the
(normalized) difference between the average of a function on an in-
finitesimal sphere around a point and the value of the function at the
point itself.

Spectral analysis on manifolds.

Given a compact manifold M with boundary ∂M , the LBO as self-adjoint
and positive semi-definite operator, admits an orthonormal eigende-
composition [29]:

∆Mφi (x) =λiφi (x) x ∈ int(M ) (2.9)

〈∇Mφi (x), n̂(x)〉 = 0 x ∈ ∂M , (2.10)

with Neumann boundary conditions (2.10), where n̂ is the normal vector
to the boundary. Here, 0 =λ1 ≤λ2 ≤ . . . is a countable set of non-negative
real eigenvalues and φ1,φ2, . . . are the corresponding orthonormal eigen-
functions satisfying 〈φi ,φ j 〉L2(M ) = δi j .
In analogy to the Euclidean case, the LBO ∆M endows us with the Fourier
analysis on surfaces. The Laplacian eigenfunctions form indeed an or-
thonormal basis for L2(M ) that are thus referred as manifold harmonics
(MH). A function f ∈ L2(M ) can therefore be expressed as the Fourier
series:

f (x) = ∑
i≥1

〈φi , f 〉L2(M )︸ ︷︷ ︸
f̂i

φi (x), (2.11)

where f̂i are the Fourier coefficients of the Fourier transform). The syn-
thesis f = ∑

i≥1 f̂iφi (x) is the inverse Fourier transform. The eigenvalues
λi can be interpreted as frequencies in the classical harmonic analysis.
Truncating the series (2.11) to the first k terms will result in a band-
limited (with bandwidth λk) representation of f .
Thanks to this extension of the Fourier transform to surfaces and starting
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from the convolution theorem and equation 2.5, we can generalize the
definition of the convolution between two functions f and g ∈ L2(M ) as:

f ∗ g = ∑
i≥1

f̂i ĝiφi (x), (2.12)

where
{

f̂i ĝi

}
i≥1 are the Fourier coefficients of the convolution f ∗ g .

Dirichlet energy

Given a function f ∈ L2(M ), the Dirichlet energy of f is defined as:

ES( f ) := 〈∇M f ,∇M f 〉L2(T M ) = 〈 f ,∆ f 〉L2(M ) (2.13)

measures how ‘smooth’ the function is. It is possible to show that the
Laplacian eigenbasis is the solution to the optimization problem

min
ψ1,...,ψk

k∑
i=1

ES(ψi ) s.t. 〈ψi ,ψ j 〉L2(M ) = δi j (2.14)

and thus it can be considered as the smoothest possible orthonormal
eigenbasis. Furthermore, the eigenvalues can be obtained as the values
of the Dirichlet energy, ES(φi ) =λi .

2.2.2 Spectral geometry processing

Spectral geometry processing was proposed at the beginning of the 90’s as
the attempt to move tools from signal processing to the 2-dimensional
surfaces setting. This vision takes the surfaces as the domain on which
signals are defined, and replace the analysis of the points seen as their
embedding in R3 with the analysis of signals defined on the surface.
There are many classical contexts in which signal processing gives a new
solution for many complicated problems. Spectral geometry processing
aims to find the same advantage in Geometry processing. As we saw
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above Fourier transform is one of the milestone in classical signal pro-
cessing and it is at the base of many standard techniques, such as ma-
nipulation, filtering and compression of signal. In analogy with standard
signal processing also in spectral geometry processing the definition of
the Fourier analysis on surfaces allows to extend many techniques on
shape. We refer the reader to [87] for a complete of definition and ba-
sic constructions in spectral geometry processing. In particular for the
parallel with Fourier analysis please refer to [146]. Many other paper
could be cited for spectral geometry processing, we propose just some
of them, [86], [143], [142].

2.3 Discrete representation

In the discrete setting, a surface M is represented as discrete samplings
from M itself, that is a collection of points in R3. Mostly, two different
discrete representations are used:

point clouds: just the collections of points sampled from the surface
given as coordinates in the Euclidean space R3.

polygonal meshes: in addition to points is also given a connectivity a-
mong points that improve the representation of the surface.

In this thesis, except for special cases, the manifold M is sampled at N
points x1, . . . , xN and is approximated by a triangular mesh (V ,E ,F ) con-
structed upon these points, where V = {1, . . . ,n}, E = Ei ∪Eb and F are
the vertices, edges, and faces of the mesh, respectively (Ei and Eb denote
the interior and boundary edges, respectively). The discretization of the
Laplace-Beltrami operator ∆M takes the form of an N ×N sparse matrix
L =−A−1W according to the standard lumped linear FEM [94]. The mass
matrix A is a diagonal matrix of area elements Ai = 1

3

∑
j k:i j k∈F Ai j k , where

Ai j k denotes the area of triangle i j k. The stiffness matrix W contains the
cotangent weights [120]:
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wi j =



(cotαi j +cotβi j )/2 i j ∈ Ei;

(cotαi j )/2 i j ∈ Eb;

−∑
k 6=i wi k i = j ;

0 else;

(2.15)

where αi j ,βi j denote the angles ∠i k j ,∠ j hi of the triangles sharing the
edge i j . Note that as in the continuous case the eigenvectors are A-
orthonormal, i.e. Φ>AΦ= I.
Functions f ∈ L2(M ) are represented as N -dimensional vectors

f = ( f (x1), . . . , f (xN ))> ,

the inner products 〈 f , g 〉L2(M ) are discretized by area-weighted dot prod-
ucts f>Ag.

2.4 Point-to-point matching

In this Section we would like to briefly introduce one of the most well-
known geometry processing application: point-to-point matching. This
Section does not give a complete overview of all the methods related
to this application, but rather outline a classical application that will be
faced in this thesis. This allows the reader to address most of the experi-
mental part of this thesis.

Point based matching plays an important role in shape analysis and
geometry processing. The key approach consists of defining an effec-
tive point signature (or descriptor) able to capture the most notable local
shape characteristic or feature in the neighborhood of the point. Shape
descriptors are commonly used in a wide range of geometry process-
ing applications, such as correspondence, segmentation, labelling, and
retrieval. A shape descriptor is a method for describing the local be-
haviour of the surface around some point, which is captured by a multi-
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dimensional vector. The set of descriptors for all the points of the sur-
face can be thought of as a vector field thereon. Typically, one wishes
a descriptor that is discriminative (highlighting distinctive attributes),
robust (invariant with respect to noise and deformations) compact (us-
ing a small number of dimensions), and computationally-efficient. There
is a plethora of literature on geometric shape descriptors, and we re-
fer the reader to a recent survey for a comprehensive overview [88]. De-
scriptors like spin images [70], shape distributions [114], integral volume
descriptors [98], and multi-scale features [119] are based on extrinsic
structure of the shape and therefore invariant under Euclidean transfor-
mations, but not under non-rigid deformations. One of the first works
to deal with deformations was Elad and Kimmel [46] employing mul-
tidimensional scaling to represent the geodesic distance metric in the
Euclidean space. Other descriptors based on geodesic were proposed
in [59], while [8] used conformal factors. Spectral descriptors try to ex-
ploit the geometry arising from the eigenfunctions and eigenvalues of
the Laplace-Beltrami operator of the surface [9,35,86]; popular methods
include shapeDNA [125], global point signature (GPS) [133], heat kernel
signatures (HKS) [50, 140], wave kernel signatures (WKS) [5], and heat
kernel maps [117]. HKS ans WKS will be widely discussed in the follow-
ing Chapter 3, as a derivation of diffusion processes. Another class of ap-
proaches try to bring successful models like SIFT [93] or shape context,
[7] from images to surfaces [79,139]. Following the recent image process-
ing trend of learning invariant structure rather than trying to hand-craft
them, several learning frameworks have been proposed in the geome-
try processing community as well, for applications such as correspon-
dence [131], retrieval [89], labelling and segmentation [63, 73]. Several
methods for learning descriptors have appeared very recently [36,90,99].
The main advantage of learning methods is, instead of trying to create a
generic descriptor that would work well for all kinds of shapes, to design
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a class-specific descriptor that would address fine-grained differences be-
tween shapes in the class, and particular type of noise or deformations.

Global Point Signature (GPS)

To conclude this subsection we would like to give an example of spec-
tral descriptor that will be important for our further discussion. This ex-
ample also makes us possible to anticipate some limits of the LBO and
its eigendecompositions which will be widely discussed in the following
chapters.
Rustamov [133] proposed the global point signature (GPS) embedding, a
dense shape descriptor constructed using scaled LBO eigenfunctions,

f(x) = (λ−1/2
1 φ1(x), . . . ,λ−1/2

Q φQ(x))>, (2.16)

thus associating each point x with a Q-dimensional descriptor (see [9,35]
for earlier constructions in the theoretical math community).

Due to an inherent ambiguity in the definition of the LBO eigenbasis,
GPS descriptors cannot be matched in a simple-minded manner. First,
an eigenfunction is defined up to sign, ∆M (±φi ) = λi (±φi ). Second, if
an eigenvalue with non-trivial multiplicity is present in the spectrum of
∆M , any rotation in the corresponding subspace produces valid eigen-
functions. Third, noise and non-isometric deformations may alter the
eigenvalues and eigenfunctions of the LBO. Trying to cope with these
ambiguities, several techniques have been proposed trying to match GPS
descriptors (see, e.g. [100]). This overview is not exhaustive, and we refer
the reader to the cited related works and references therein for a more
complete picture.

2.5 Data and Datasets

This Section contains references and informations about some of the
data and datasets used in this thesis. With dataset we mean a collection
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of shapes represented as triangular meshes that are available for research
activity. Many different datasets are available for geometry processing,
each of which is characterized by the class or classes of shape contained,
the type of problems that they present, and different ground-truth infor-
mations that they may possess.

FAUST [13] is a recent dataset of scanned human shapes in different
poses. The dataset is challenging due to the significant variability be-
tween different human subjects. Ground truth point-wise correspon-
dence between the shapes is available for all points. All of these meshes
have the same connectivity. We use the whole FAUST dataset consist-
ing of 100 shapes, 10 poses of 10 different subjects respectively, along
with additional shapes that have been edited by adding different types of
noise: Gaussian noise, heavy subsampling, voxelization noise, topologi-
cal noise (glued fingers and missing parts). In addition are also available
the real scans of humans from which the dataset is generated. These real
scans are high resolution non-watertight mesh. These meshes are more
noisy, without registration and without ground truth correspondences
available.

Princeton Segmentation Benchmark (PSB) [31] is a large dataset that
contains 3PSB80 triangular meshes equally divided in 19 categories, so
for every category there are (PSB)20 elements. A common meaningful
segmentation is given as ground truth for each category, this segmenta-
tion was defined from the manually segmentations of the surface meshes
dividing them into functional parts, done by eighty people and yielding
an average of 11 human-generated segmentations. We limit ourself to a
subset of 8 categories for reasons linked to the memory and due to the
segmentation method used.

SCAPE [4] similarly to FAUST is a dataset containing a scanned human
model in different poses. SCAPE datasets contains 71 registered triangu-
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lar meshes of a particular person in different poses, with more than 10K
vertices. A ground truth point-wise correspondence between the shapes
is known.

TOSCA dataset [19], comprises 7 different shape classes (centaur, horse,
two male subjects, female, cat, and dog). All these shapes are synthetic
models. In each such class, a “null” shape and some different near-
isometric deformations are available. Despite the deformations this da-
taset has a strong isometry between elements of the same class. The
number of vertices of these shapes is different for each class and goes
from around 10K to around 30k. A ground truth point-wise correspon-
dence between the shapes in the same class is available for all points.

CAESAR is a human shapes dataset recovered from MPII Human Shape
[121], a family of expressive 3D human body shape models learned from
CAESAR dataset [126] the largest commercially available dataset that
contains 3D scans of over 4500 subjects in a standard pose. We use a
random selected subset of 21 shapes from the CAESAR-fitted meshes col-
lection in which a template is fitted. For every shape we have around 6k
vertices with 1:1 ground-truth correspondence.

KIDS [131] consists of a collection of 3D shapes undergoing nearly-
isometric and intraclass deformations. In this dataset we find two differ-
ent shape classes (kid and fat kid) in 16 different poses. The same poses
are applied to both classes. The authors provide all shapes with consis-
tent triangulations using around 60k vertices consistently ordered giving
the ground-truth correspondence as the identity map.

MISC dataset is composed of pairs of highly non-isometric shapes such
as a horse and an elephant. Therefore, this dataset is particularly chal-
lenging since the usual hypothesis of isometric relations between shapes
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is totally violated. Manually generated ground truth point-wise corre-
spondences are available for a dense subset of points in this dataset.

SHREC’11 benchmark [17]. The class includes one full human shape
(i.e., the null shape) and 5 versions of its simulated transformations of
pose deformation with strong deformations of different types.

A Benchmark for 3D Interest Point Detection Algorithms, this dataset
[43] was created specifically for the salient point detection application.
Meshes are chosen from the Stanford 3D Scanning Repository and some
others from the SHREC’2007. There are two dataset available. Dataset A
consists of 24 surfaces which were hand-marked by 23 human subjects.
Dataset B with 43 models, that are marked at least by 16 subjects. On
these dataset is thus provided a human-generated ground truth of salient
points that is obtained from the hand-marked selection made by sev-
eral subjects. The authors define also a new evaluation criterion (WME)
based on importance of the selected points, where importance is based
on the same hand-marked selections. The output of six state of art meth-
ods are provided but not for all the models. For this reason we limit our
tests on the 21 available models in the dataset A.
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Diffusion process

In this Chapter we briefly introduce diffusion process on shapes. We present
two alternatives that have been proposed during the last decades. At the
end of this chapter we describe some descriptors that derive from this kind
of process, and that are strictly related with spectral geometry processing.
In our idea this chapter should be a first step in the geometry processing
word. We would like to use these discussion in order to make the reader
more familiar with tools, properties of shapes and their spectral represen-
tation.

3.1 Diffusion process

We introduce the reader to the diffusion process using the point of view
proposed by the authors of [35]. In [35] diffusion process is seen as a tool
“for finding meaningful geometric descriptions of data sets”. The diffu-
sion process theory is general and applicable to many different domains
as done in [35]. In this thesis our interest is limited to the case where the
domain M is a compact Riemannian manifold. Consistently with Chap-
ter 2, in the discrete setting we represent M as a triangular mesh, as is
done also in [18] that will be the main reference of this Chapter. Let dx
the standard area measure on M . A function k : M ×M → M is called
diffusion kernel if it satisfies the following properties [18]:
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(K 1) Non-negativity: k(x, x) ≥ 0.
(K 2) Symmetry: k(x, y) = k(y, x).
(K 3) Positive-semidefiniteness: for every bounded f ,Ï

k(x, y) f (x) f (y) dx(x) dx(y) ≥ 0.

(K 4) Square integrability:
Î

k2(x, y) dx(x) dx(y) <∞.
(K 5) Conservation:

∫
k(x, y) dx(y) = 1.

Starting from a diffusion kernel it is possible to define a linear opera-
tor, namely a diffusion operator:

K f =
∫

k(x, y) f (y)dx(y).

The properties that define k guarantee us that the diffusion operator K
admits a an eigendecomposition with eigenvalues {αl }∞l=0 s.t. 0 ≤ αl ≤ 1,
and their associated eigenvectors

{
φl

}∞
l=0, which form an orthonormal

basis of L2(M ). Thanks to the spectral theorem we can give the following
spectral representation of the diffusion kernel k:

k(x, y) =
∞∑

l=0

αlφl (x)φl (y). (3.1)

Moreover, it is easy to show that for every t ∈ R and t ≥ 0, Kt is again a
diffusion operator which is the diffusion operator associated to the dif-
fusion kernel kt (x, y) defined similarly to 3.1, as Kt inherits the eigen-
functions from K, and its eigenvalues correspond to {αt

l }∞l=0.
From a graph-based point of view k(x, y) can be interpreted as the one
step transition probability of a random walk on M from x to y . In this
perspective the value kt (x, y) obtained from Kt represents the t steps
transition probability of a random walk on M from x to y . Looking at
t as a scale parameter (usually the time), it is now possible to define a
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scale space of diffusion kernels
{
kt (x, y)

}
t∈T for a given set of scale pa-

rameters T . In the discrete case the diffusion operator becomes a N ×N
matrix K, where N is the number of vertices of the mesh that represent
M .

3.2 Heat kernel

There are several diffusion process that could be analyzed using the the-
ory exposed in the previous section. We focus on the heat diffusion pro-
cess, that is one of the most used in literature. The heat diffusion process
on a surface M is governed by the heat equation, a differential equation
of the following form:

−∆M u(x, t ) = ∂u(x, t )

∂t
, (3.2)

where ∆M is the Laplace-Beltrami operator on M . Usually a function
u0 is given as the initial heat distribution on the surface, or in other
words u0(x) = u(x,0), ∀x ∈ M at time t = 0. The solution of the dif-
ferential equation 3.2 for the initial condition u(x,0) = u0 is a function
u : M ×R→R that solve 3.2 and s.t. u(x,0) = u0.
The solutions of this differential equation are widely studied and can be
written in a form that is coherent to the previous Chapter. Indeed it is
possible to define a diffusion kernel, the heat kernel h(x, y), and a diffu-
sion operator, the heat operator H that play exactly the same roles as k
and K in the general version. As done previously for K also for H we can
consider the scale space of heat operator Ht for a given real parameter
t ≥ 0.
Ht can be viewed as an operator that, fixing an initial heat distribution
u0 produces as output the heat distribution after a time t .
Furthermore it is possible to see that the heat operator H is strongly re-
lated with the LBO by the following equivalence:
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Ht = e−t∆M . (3.3)

Thanks to this equivalence we have that Ht and ∆M have exactly the
same eigenvectors as shortly proven. Lets φ be an eigenvector of ∆M

such that ∆Mφ=λφ for a given eigenvalue λ than:

Htφ= e−t∆Mφ=
inf∑
j=0

(−1) j (t ) j

j !
∆

j
Mφ=

inf∑
j=0

(−1) j (t ) j

j !
λ jφ

=
inf∑
j=0

(−1) j (λt ) j

j !
φ= e−λtφ,

(3.4)

From the last equivalence we obtain that φ is an eigenvector of Ht and its
corresponding eigenvalue is e−λt .
We denote with Ht (u0) the heat distribution at time t for a given initial
distribution u0. Thanks to the spectral theorem, in the spirit of equation
3.1, we can write the heat kernel for a time t using the Fourier basis:

ht (x, y) =
∞∑

l=0

e−λl tφl (x)φl (y). (3.5)

3.3 Wave kernel

A second remarkable diffusion process is the wave diffusion process. The
wave diffusion is based on a different physical model that represents the
motion of a quantum particle on the manifold, whose behaviour is gov-
erned by the Schrödinger equation:

−i∆M u(x, t ) = ∂u(x, t )

∂t
(3.6)

where u(x, t ) is the complex wave function capturing the particle be-
haviour.
Despite an apparent similarity to the heat equation (3.2), because of
the complex exponent, the behaviour of the solution of the Schrödinger
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equation is oscillatory. Assuming that a quantum particle oscillates with
unknown position on M .
In [5] it is shown how to approximate an initial energy E for the particle.
From this approximation is also possible to obtain an energy probabil-
ity distribution f 2

E with expectation value E . This energy probability dis-
tribution is defined in [5] as a log-normally distribution dependent on
the eigenvalues of the LBO eigendecomposition of the surface. Thanks
to this definition the energy is explicitly related to frequencies expressed
as eigenvalues {λl }i . Assuming that the particle oscillates at frequency λ

drawn from a probability distribution f 2
E (λ), the solution of (3.6) can be

expressed in the Fourier domain as

u(x, t ) =
∞∑

l=0

e iλl t fE (λl )φl (x). (3.7)

It is also appreciable to highlight the link between the the wave kernel
and the probability of finding the particle at point x that can be com-
puted as:

p(x) = lim
T→∞

∫ T

0
|u(x, t )|2d t =

∞∑
l=0

f 2
E (λl )φ2

l (x), (3.8)

and depends on the initial energy distribution fE .

3.4 spectral diffusion descriptors

3.4.1 Heat Kernel Signature (HKS)

From the heat diffusion on shape a widely used point descriptor is ob-
tained: the Heat Kernel Signature (HKS).
The component at time t of the Heat Kernel Signature (HKS) [140] [50]
for a point x ∈M is defined as:

ht (x, x) =
k∑

l=0

e−λl tφ2
l (x) (3.9)
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where λl , φl are eigenvalues and eigenfunctions given by the LBO eigen-
decomposition and k is the number of selected eigenfunctions. In the
continuous case k could be equal to ∞. If k = ∞ the heat kernel is ex-
actly computed. In the discrete case k ≤ N (N is the number of vertices
of M ), usually k = 100 or 200. In this case the heat kernel is approximated
due to the truncation in the set of eigenvalues and eigenvectors.
In [140] it is shown how the HKS ensures the so called informative the-
orem which states that if M and N are two compact manifold and
the eigenvalues of the respective Laplace-Beltrami operators are not re-
peated, then the heat HKS is preserved for every isometry T between the
two manifold, i.e. hM

t (x, x) = hN
t (T (x),T (x)), ∀x ∈M .

As we already highlighted in Chapter 2, some shapes could have some
eigenvalues that are very close each others by leading to a switch in the
order. In our practical experience the HKS descriptors are quite robust
with respect to this non optimal situation.
The HKS is also known as the autodiffusivity function. The physical in-
terpretation of autodiffusivity is the amount of heat remaining at point x
after time t . Geometrically, autodiffusivity is related to the Gaussian cur-
vature K (x) by virtue of the Taylor expansion ht (x, x) = 1

4πt + G(x)
12π +O (t )

where G(x) denotes the Gaussian curvature at point x. Sun et al. [140]
defined the heat kernel signature (HKS) of dimension Q at point x by
sampling the autodiffusivity function at some fixed times t1, . . . , tQ ,

f(x) = (ht1(x, x), . . . ,htQ (x, x))>. (3.10)

3.4.2 Wave Kernel Signature (WKS)

While resembling the HKS in its construction and computation, WKS is
based on log-normal transfer functions that act as band-pass filters and
thus exhibits better spatial localization. In the same way, for a given ap-
proximation of the energy expected value E and a energy probability dis-
tribution f 2

E , we can define the component for the energy E of the Wave



45

Kernel Signature (WKS) [5], as

w(x,E) =
k∑

l=0

fE (λl )2φl (x)2. (3.11)

The WKS can be seen as the approximation of the probability of finding
the particle with energy probability distribution f 2

E at point x and k ≤ N
is the number of selected eigenfunctions. As we already said Aubry et
al. [5] considered a log-normal frequency distribution defined as

fE (λl ) = exp

(
logE − logλl

2σ2

)
, (3.12)

with mean frequency E and standard deviation σ. They defined the Q-
dimensional wave kernel signature (WKS) as the collection

f(x) = (w(x,E1), . . . , w(x,EQ))>, (3.13)

where E1, . . . ,EQ are Q logarithmically-sampled energies. In [5] all the
fixed parameters are explained in details. The WKS is also intrinsic and
informative, i.e. once again for every isometry T between M and N , we
have that wM (E , x) = wN (E ,T (x)), ∀x ∈M and for every E ∈R.

3.4.3 Signal Processing and Heat/Wave Kernel Signature

Several popular spectral shape descriptor take a generic form of the diag-
onal of a parametric kernel diagonalized by the LBO eigenbasis. Notable
examples include the heat kernel signature (HKS) [50, 140] and the wave
kernel signature (WKS) [5] presented just before. More specifically, such
methods construct at each point x ∈M a Q-dimensional descriptor f de-
fined as:

f(x) =
∞∑

i=0

τ (λi )φ2
i (x) (3.14)
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expressed by a bank of transfer functions τ (λ) = (τ1(λ), . . . ,τQ(λ))>.
This formula can be seen as a filtering operation on some signal repre-
sented as a linear combination of the square of the eigenfunctions of the
LBO.
Such descriptors have several appealing properties making their use
popular in numerous applications. First, they are intrinsic and hence in-
variant to isometric deformations of the manifold by construction. Sec-
ond, they are computable at every point of the manifold. Third, (3.14) can
be efficiently computed using the first few eigenvectors and eigenvalues
of the Laplace-Beltrami operator.
HKS uses low-pass transfer functions τt (λ) = e−tλ for various values of
the parameter t ∈ {t1, . . . , tQ}, giving rise to the autodiffusivity function
ht (x, x), whose physical interpretation is the amount of heat remaining
at point x after time t . A notable drawback of HKS is poor spatial localiza-
tion, which is a consequence of the uncertainty principle: good localiza-
tion in the spectral domain (large value of t ) results in a bad localization
in the spatial domain.

WKS uses band-bass transfer functions τE (λ) = exp
(

logE−logλ
2σ2

)
for various

values of the parameter E ∈ {E1, . . . ,EQ}. The physical interpretation of
WKS is the probability to find a quantum particle at point x, given that
it has an initial log-normal energy distribution with mean value E and
variance σ. Typically, WKS exhibits oscillatory behaviour and has a bet-
ter localization compared to HKS.

Optimal spectral descriptors (OSD)

Looking at HKS and WKS as descriptors obtained by a filtering operation
gives us the possibility to introduce a learned descriptor that is based
on the same type of construction, namely the Optimal Shape Descriptor
(OSD). Litman and Bronstein [90] used parametric transfer functions ex-
pressed as
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τq (λ) =
M∑

m=1
aqmβm(λ) (3.15)

in some fixed (e.g. B-spline) basisβ1(λ), . . . ,βM (λ), where aqm (q = 1, . . . ,Q,
m = 1, . . . , M) are the parametrization coefficients. Plugging (3.15) into
(3.14) one can express the qth component of the spectral descriptor as

fq (x) = ∑
k≥1

τq (λk)φ2
k(x) =

M∑
m=1

aqm

∑
k≥1

βm(λk)φ2
k(x)︸ ︷︷ ︸

gm(x)

, (3.16)

where g(x) = (g1(x), . . . , gM (x))> is a vector-valued function referred to as
geometry vector, dependent only on the intrinsic geometry of the shape.
Thus, (3.14) is parametrized by the Q × M matrix A = (al m) and can be
written in matrix form as f(x) = Ag(x). The main idea of [90] is to learn the
optimal parameters A by minimizing a task-specific loss. Given a train-
ing set consisting of a pair of geometry vectors g,g+ representing know-
ingly similar points (positives), and g,g− representing knowingly dissimi-
lar points (negatives), one tries to find A such that ‖f− f+‖ = ‖A(g−g+)‖ is
as small as possible and ‖f− f−‖ = ‖A(g−g−)‖ is as large as possible. The
authors show that the problem boils down to a simple Mahalanobis-type
metric learning.
The geometry vectors are introduced here, because they will be used in
some of the next Chapters.
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Advances in Functional Maps

In this Chapter we introduce a new set of data and a new application re-
lated to a specific framework for geometry processing: Functional Maps.
Functional Maps is a recently proposed framework for inference and ma-
nipulation of maps between shapes. Our contribution in this Chapter is
twofold. First, we propose a new method to provide a set of indicator func-
tions that is used effectively to improve the original functional maps es-
timation. Second, we introduce our functional kernel for brain classifica-
tion as a new application of functional maps. We start the Chapter with an
overview of the theory on which the functional maps is based. As we show
the mathematical construction, that makes the functional maps represen-
tation efficient for maps between shapes, is strongly related to the Fourier
transform. For this reason, for its great potential in applications, and for
the wide use of this framework in our work we dedicate the whole Chapter
4 to functional maps.

4.1 Original framework

Considering a pair of Riemannian surfaces M and N , to these sur-
faces we can associate a functional space. As example we can consider
the space of real value continuous functions defined on the surface M :
F (M ,R) = { f : M −→R s.t. f is continuous }.



50

The main idea behind functional maps is to move the analysis of the cor-
respondence between two shapes from the set of points on the surfaces
to their functional spaces. In the geometry processing context functional
maps was firstly introduced by Ovsjanikov et al. in [115], for more details
we refer the reader to this paper.

Let’s start with a correspondence Π between our pair of surfaces Π :
N −→ M , expressed as a point-to-point map. At this level we can con-
sider Π as a bijective map for simplicity and M and N could be contin-
uous or discrete surfaces without any variations in the definitions. Now
if we consider F (M ,R) and F (N ,R) the functional spaces defined over
M and N respectively, then Π induces a map T between F (M ,R) and
F (N ,R) in the following way:

T : F (M ,R) −→F (N ,R)
f 7−→ g = f ◦Π

From the definition of g it is clear that g ∈ F (N ,R), indeed for every
point y ∈ N we have that g (y) = f (Π(y)) ∈ R, because Π(y) ∈ M and
f is well defined for every point on M . We assert here that knowledge
of T is equivalent to knowledge of Π, and that T is a linear map between
functional spaces while Π is a more sophisticated map between surfaces.
The linearity of the map T is with respect to the three operations that
make the space F (M ,R) an algebra, that is∀ f , f1, f2 ∈F (M ,R) and∀a ∈
R:

scalar product T (a f ) = aT ( f );
sum of functions T ( f1 + f2) = T ( f );
product of functions T ( f1 ¯ f2) = T ( f1)¯T ( f2);

where ¯ is the point-wise product. For more details and the proofs of
these facts we refer the reader to [115], [111].
Now suppose that the functional spaces are equipped with basis, φM

1 , . . . ,
φM

i , . . . and φN
1 , . . . ,φN

j , . . . respectively for M and N , such that we can
write every function in F (M ,R) as a linear combination of the basis f =
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i=1 alφ

M
i , ∀ f ∈F (M ,R), with coefficients ai ∈R, similarly for F (N ,R).

With these basis and thanks to the linearity of the map T we can write:

T ( f ) = T (
∑
i=1

aiφ
M
i ) = ∑

i=1

T (aiφ
M
i ) = ∑

i=1

ai T (φM
i ). (4.1)

Here, thanks to the map T , we have that the functions T (φM
i ) ∈F (N ,R)

and so we can write them as:

T (φM
i ) = ∑

j=1

ci jφ
N
j ∀i ∈N. (4.2)

Putting together 4.1 and 4.2 we obtain:

T ( f ) = ∑
i=1

ai T (φM
i ) = ∑

i=1

ai

∑
j=1

ci jφ
N
j = ∑

j=1

∑
i=1

ai ci jφ
N
j . (4.3)

From the last equation we can compute the coefficients b j of T ( f ) in the
basis φN

1 , . . . , φN
j , . . . as b j =∑

i=1 ai ci j , and so T ( f ) =∑
j b jφ

N
j . Note that

each ci j does not depend from ai and b j , ∀i , j ∈N as shown in equation
4.2 where all the ci j are defined, so they are independent from the coef-
ficients ai and b J and conversely they only depend from the selection of
the basis functions {φM

i } and {φN
j }.

Using these basis, if we represent the function f ∈ F (M ,R) as its coeffi-
cients a = (a1, . . . , ai , . . .) and similarly T ( f ) ∈F (N ,R) as b = (b1, . . . ,b j , . . .),
starting from the previously definition of b j =∑

i=1 ai ci j , we can fully rep-
resent the map T as a matrix C = (ci j ) (possibly infinite dimensional)
such that:

b = Ca, (4.4)

Regarding the selection of the basis, a particular case is observed when
the orthonormal basis, composed by the indicator functions for each ver-
tex is chosen. Indeed with this choice in discrete setting the matrix C
coincides with the permutation matrix associated with the correspon-
dence map Π. Furthermore no dimensionality reduction can be gained
with this choice.
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4.1.1 Fourier transform and the functional maps

As stressed in the previous paragraph the matrix representation C of the
functional map depends only on the choice of the basis for the two func-
tional spaces. It is important to highlight the connection between the
functional maps framework and signal processing. As previously intro-
duced in Chapter 2, from Fourier transform we receive a canonical basis
for the square-integrable functions on a surface. In Chapter 2 we also in-
troduced the Laplace Beltrami operator (LBO) defined on surface, and
we observed the connection between its eigenfunctions and the stan-
dard Fourier basis in the Euclidean case. If we limit the functional spaces
to the square-integrable real value functions

F (M ,R) = L2(M ) = { f : M −→R s.t
∫

M
f 2(x)d x <∞},

and similarly F (N ,R) = L2(N ) = { f : N −→R s.t
∫

N
f 2(y)d y <∞},

then we can use the LBO eigenfunctions as basis for these two spaces. As
done in the Chapter 2 we will refer to the LBO eigenfunctions as Manifold
Harmonics (MH). Here we resume once again the properties of the MH,
which have already been shown in Chapter 2. First, as we saw in Chapter
2, the MH are a set of orthonormal functions, that is:

〈φM
i ,φM

l 〉M =
{

1 if i = l

0 otherwise,
(4.5)

where 〈·, ·〉M is the standard inner product on the Riemannian manifold
M . The orthonormality allows us to compute in an easy way both for
the coefficients of functions and for the elements of the matrix C. For the
coefficients of a function f ∈ L2(M ) we have:

ai = 〈φM
i , f 〉M , ∀i = 1, . . . , (4.6)
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where the orthonormality guarantees the uniqueness of the coefficients
{ai }. These coefficients {ai } are exactly the Fourier coefficients of the
Fourier transform of f . Regarding the elements ci j of the matrix C start-
ing from equation 4.2 we can obtain the following equation:

ci j = 〈φN
j ,T (φM

i )〉N , ∀i , j = 1, . . . , (4.7)

since the function T (φM
i ) ∈ L2(N ) can be written as linear combination

of the basis {φN
j } with coefficients defined as in Equation 4.6.

A second important property of the MH is that we can consider only a
subset of the basis {φi }kM

i=0 for some kM ∈ N obtaining a low-frequencies
approximation of the functional space L2(M ). Indeed if the MH are or-
dered with increasing eigenvalues (or frequencies), representing f as the
truncated linear combination f = ∑kM

i=0 aiφ
M
i corresponds to a low-pass

filtering of the function f . In the same way for L2(N ) we can select a sub-
set {φ j }kN

j=0 for some kN ∈N which can be different from kM . Using only
a finite (and preferably small) number of basis functions we can obtain
a compact representation of the functional space. This is true also for
the functional map, with a finite matrix C̄ which can be seen as the top-
left submatrix of the original matrix C with dimension kN +1×kM +1.
The order of the MH makes it possible to obtain different levels of rep-
resentation of the functional spaces in a trade-off between compactness
(obtained with small values of kM ) and accuracy of the approximation
(given instead by large values of kM ). The matrix C is strongly dependent
from this choice inheriting compactness and accuracy directly from the
level of the approximation used for the functional spaces. A third notable
property of the MH is that ordered collections of MH spanned subspace
of L2(M ) which is stable with respect to the isometric deformations. Al-
though as discussed in Chapters 2 and 3 the MH of two different (also
isometric) shapes may differ for the sign and for some switches in the
order, the subspace spanned by the fist kM + 1 MH is known to be sta-
ble to near-isometric deformations unless the kM +1-th and the kM +2-
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th eigenfunctions belong to the same eigenspaces. The stability to near-
isometric deformations ensures that the functions generated by the MH
are also invariant to isometric deformations. If the correspondence Π is
also an isometry than the matric C assumes a very particular structure.
In fact if Π is an isometry it preserves the area elements and if we sup-
pose that the MH on M and on N share the order, and that there are
not eigenvalues with multiplicity greater than one, then the matrix C is
a diagonal matrix. The diagonal structure of C means that the functional
map T maps every eigenfunction φM

i to φN
i , less than a scalar. Although

this diagonal structure is guaranteed only by two strong assumptions, in
general for an isometry Π is true that the C obtained from the MH is a
sparse matrix close to diagonal with some non-diagonal elements only
in correspondence with the repeated eigenvalues or switch in the order
of eigenfunctions on the two shapes.

4.1.2 Continuity

The functional representation of a point-to-point map makes easier to
analyze the continuous structure of the surfaces. The point-to-point
maps are by themselves discrete in the sense that they consider as unit of
information points that are sampled on the surfaces. Functions that can
be represented by MH are continuous functions defined on the contin-
uous domain of the surface. So with functional representation of corre-
spondences and using the MH as basis we obtain:

− a continuous map C with respect to continuous variations of the input
function f (its coefficients a);

− a continuous representation of the functional spaces with C that maps
continuous functions on M to continuous functions on N due to the
fact that the MH can only represent continuous functions on the sur-
faces.

− a continuous representation also of the space of maps between shapes,
in the sense that continuous variations in the elements of the matrix C
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gives continuous variations of the resulting meaningful maps between
shapes.

The continuous representation of the spaces of maps makes possible all
the operations as sum difference composition among set of maps. As we
already highlighted, the choice of the MH as basis allows us to ensure
the continuity of the functions considered on the two shapes and in the
same time the continuity of the map. This property is definitely desirable
if we are trying to represent a correspondence between pairs of isometric
shapes. The correspondence has to be continuous in the domain and in
the image of the map in the sense that near points from one shape has to
be mapped in near points on the second shape in a continuous way.

4.1.3 Linearity of the constraints

Generally for a given pair of shapes M and N the point-to-point cor-
respondence Π is unknown, and it is therefore impossible to obtain the
map T and its matrix representation C. The matrix C can be estimated
solving a constrained optimization problem, that will be shortly defined.
One of the main contributions of the functional representation is that it
allows operations and to impose a set of constraints linearly, simplifying
their application naturally and improving the final results of this opti-
mization problem.

Functional constraints

Let f ∈ L2(M ) and g ∈ L2(N ) be a pair of corresponding functions re-
spectively defined on M and N . Here for corresponding functions we
mean that f and g are the same function but defined on the two differ-
ent surfaces. Let a and b be the representations respectively of f and g in
the basis functions {φM

i } and {φN
j }. Since these are corresponding func-

tions we can impose on C a function preservation constraint defined as:

Ca−b = 0, (4.8)
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here we stressed again that the linearity of this constraint is allowed by
the functional representation. This constraint only depend on the func-
tion f and g and is independent from C and from the basis selected for
the functional spaces.
In order to select functions for this constraint we have different possible
choices. We can use as function a set of point descriptors, and looking for
a C that approximately maps a descriptor computed on M in the same
descriptor computed on N . As example in [115], the already presented
HKS and WKS descriptors are used.
A different function that could be used are landmark point correspon-
dences. If we know that y ∈ N is the corresponding point of a point
x ∈M than we can use as function f and g the indicator function of these
points. For indicator function of a point x we mean a function which is
zero everywhere but equal to 1 in x. Any other kind of function derived
from the knowledge of the correspondence between these two points can
be used.
In the same way if instead of correspondence between two points we
know the correspondence between two regions or segments on the two
shapes we can use the indicator of these regions as function for the func-
tional constraint. For an example of how this kind of functions can be
obtained for a pair of shapes we refer to Section 4.2. Usually we refer to
the ordered set of functions selected for this type of constraint as probe
functions denoted as F and G respectively for the functions on M and on
N .

Operator commutativity constraints

A different linear constraint that could be considered is the commutativ-
ity with linear operators defined on M and N . These operator could be
quite general and in [115] some examples are given. In particular if we
are looking for a map C induced by an isometry Π then as shown in [115],
the functional maps has to commute with the LBO of the two surfaces.
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In particular if we are using the MH as basis of the functional space this
constraint can be written as:

ΛN C−CΛM = 0. (4.9)

where ΛM and ΛN are diagonal matrices of eigenvalues of the LBO re-
spectively of M and N .

Optimization problem

Finally putting together the constraints defined just above we can give
a complete formulation of the optimization problem that we can solve
in order to estimate C. Given the sets of probe functions F and G, the
estimation of C can be obtained as the solution of the following mini-
mization problem:

C = argmin
Q

||QF−G||2F +α||ΛN Q−QΛM ||2F , (4.10)

where α ∈ [0,1] is a real parameter that weighs the contribution of the
operator commutativity constraint.

4.2 Region indicator functions in functional maps

In this Section we introduce a new method for finding indicator func-
tions of corresponding regions between two shapes. The main applica-
tion of the proposed method is the improvement obtained in functional
maps when we use these functions as input in the optimization process.

As we saw in the previous Section in the functional maps optimiza-
tion is strongly recommended to use some indicator as probe functions
in the functional constraints. As indicator functions one can use some
point landmarks, such as some salient points or some corresponding
points that could be selected using some preliminary point-to-point cor-
respondence pipeline. Often it is not easy to find this kind of data. Al-
ternatively, some indicators of corresponding regions may be used. The
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problem of finding corresponding regions is widely addressed in liter-
ature. A solution for finding corresponding regions is the region-based
correspondence (RBC). Region-based correspondence (RBC) is a highly
relevant and non-trivial computer vision problem. Given two 3D shapes,
RBC seeks segments/regions on these shapes that can be reliably put in
correspondence. The problem thus consists both in finding the regions
and determining the correspondences between them. In other words the
problem can be reformulated as that of finding regions on the shapes
that behave similarly and can thus be easily put in correspondence. This
problem is different from shape co-segmentation, a different possible so-
lution to this problem, since in RBC the goal is not to find meaningful se-
mantic segments in various shapes (e.g., limbs in animal shapes), which
is the goal of shape co-segmentation, but rather to determine regions in
the two shapes that are in correspondence, as doing for example in [49].
As recently mentioned in [49] this problem statement is closely related
to that of “biclustering”, implying that RBC can be cast as a biclustering
problem [95], in particular if the points on the shapes can be endowed
with a similarity measure (e.g., based on some descriptor). Given such a
measure, a similarity matrix may be built and the goal of biclustering is
to simultaneously cluster both the rows and columns of this matrix [95].
Given a data matrix, biclustering aims at retrieving sub-matrices (i.e., bi-
clusters), in each of which a certain subset of rows exhibits a “coherent
behaviour” (in some sense) in a certain subset of columns. Bicluster-
ing differs from standard clustering, which treats whole rows/columns,
in that the former is able to focus on local information in portions of
rows and portions of columns. Many biclustering methods have been
proposed, differing in the type of biclusters that can be retrieved, as well
as in the adopted criteria and algorithms, as comprehensively reviewed
in [95, 112]. Biclustering is a well-studied problem, with applications to
gene expression data, recommender systems, market segmentation, and
other areas [39, 42, 67, 75, 107, 136]. However, maybe surprisingly, biclus-
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tering has not been used for shape correspondence, with the notable
exception of [49]. This is arguably due to the two following challenges:
Typical 3D shapes in computer vision and graphics contain considerable
geometric information, which is typically not taken into account in bi-
clustering methods. Perhaps more fundamentally, in the context of RBC,
an important property is required of the retrieved bi-clusters: spatial co-
herence, i.e., nearby points should be grouped to nearby regions. This
property is neither present, nor is easy to encourage, by using standard
biclustering methods.
In this Section, we exploit this implication by tackling RBC via a novel bi-
clustering approach, called S4B ( spatially smooth spike and slab biclus-
tering ), which: (i) casts the problem in a probabilistic low-rank matrix
factorization perspective; (ii) uses a spike and slab prior to induce spar-
sity; (iii) is enriched with a spatial smoothness prior, based on geodesic
distances, encouraging nearby vertices to belong to the same bicluster.
This type of spatial prior cannot be used in classical biclustering tech-
niques. We test the proposed approach on the FAUST dataset, introduced
in Chapter 2, outperforming both state-of-the-art RBC techniques and
classical biclustering methods. For more details about the method pro-
posed in this Section, please refer to [40].

4.2.1 Overview of the Proposed Method

Here we introduce a novel algorithm, where the rationale is to decom-
pose the data matrix into levels, each corresponding to a different biclus-
ter (as in [24, 61]), thus allowing to obtain non-exhaustive and possibly
overlapping biclusters. In this class of approaches, sparsity plays a crucial
role. In fact, the data matrices to which biclustering is typically applied
have large numbers of rows and columns (e.g., thousands by hundreds,
in gene expression data), but the biclusters often involve only small por-
tions thereof. The proposed method results from combining a proba-
bilistic low-rank matrix factorization criterion with a spike and slab prior
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Fig. 4.1: The framework of the the spatially smooth spike and slab biclustering (S4B )
for the RBC problem

to encourage sparsity. Spike and slab priors were proposed in [106] for
variable selection in linear regression, and later generalized and adopted
by many authors as general-purpose sparsity-inducing priors [68]. The
other main novel ingredient herein proposed is a spatial smoothness
prior, to improve the bicluster coherence/quality. Similarly to what has
been proposed for clustering [32], we exploit known pair-wise relations
to encourage certain rows (and/or columns) to belong to the same bi-
cluster. This is obtained by combining the spike and slab prior with two
pair-wise priors, one for the rows and one for the columns, encourag-
ing pairs of nearby rows/columns to be grouped together. We call our
method spatially smooth spike and slab biclustering (S4B ).

The spatial priors are derived from two similarity matrices (one for the
rows and one for the columns), based on the geodesic distances between
the shapes’ vertices. Those matrices control the strength with which each
pair of vertices (on each shape) is encouraged to belong to the same bi-
cluster. Consequently, the proposed S4B method combining two types of
information (as depicted in Fig. 4.1): (i) the affinity between pairs of ver-
tices of different shapes; (ii) the neighbourliness between vertices on the
same shape.
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Complexity:

The leading term concerning space complexity is O (nk) (or O (km), which
is the space needed to store the A(z) (or B(v)) matrix. Thus, an ade-
quate sparse representation can overcome this possible drawback. Re-
garding time complexity (for each iteration), the leading term is O (n3k3)
(or O (m3k3)) which is the worst case scenario for matrix multiplica-
tion/inversion of a O (nk) (or O (mk)) matrix.

4.2.2 RBC experiments

This subsection describes the experiments carried out to compare S4B
with the relevant state-of-the-art, including specific RBC and general bi-
clustering techniques. Regarding RBC-specific techniques, the most rel-
evant work is the recent stable region correspondences (SRC) approach
[49], which uses a power iteration scheme. We can directly compare
the corresponding regions obtained by S4B and SRC with respect to the
ground-truth mapping between the two shapes. Other methods pro-
duce point-to-point correspondences based on geometric features of
the shapes. We compare our corresponding regions to blended intrin-
sic maps (BIM) [76], a popular point-to-point correspondence method.
To evaluate BIM in the context of corresponding regions, we follow [49]
and use the point-to-point mapping to transport the segmentation com-
puted on one shape to the other. We also provide a comparison between
S4B and its version without the spatial smoothness prior, to show that
this prior is crucial to obtain high quality results.
All the experiments use FAUST dataset [13]. As we saw before this dataset
presents both near-isometric (different poses of the same subject) and
non-isometric deformations (due to the significant variability between
different subjects). All of the shapes have the same number of vertices,
and the ground-truth one-to-one correspondence (or map) between each
pair of shapes is available. We measure the quality of the results as the
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global labelling accuracy with respect to the ground-truth map. More
precisely, since every method assigns a label to each vertex on the two
shapes, we compute a score that sums the influence area of vertices in
one shape that are given the same label as their mapping in the second
shape. This provides the percentage of the shape’s area that has a correct
correspondence. Then, we compute the same score by inverting the role
of first and second shape, and consider the mean of these two scores as
the final score. Formally,

score(LM ,LN ) =
N∑

i=1

(
LM (i ) = LN

(
f (i )

))
AM ( f (i )) (4.11)

quality = 1

2

(score(LM ,LN )∑
(AM )

+ score(LN ,LM )∑
(AN )

)
, (4.12)

where M and N are the shapes, LM and LN are the given labels, AM and
AN indicate the influence area of each vertex, and f is the ground-truth
point-to-point mapping.

To evaluate the SRC method, we followed the guidelines provided by
its authors [49]. Concerning BIM, since its performance is highly influ-
enced by the starting segmentation, we evaluate the point-to-point map-
ping using two possible segmentations: (i) based on geodesic Voronoi
cells around a farthest point sampling [141], which provides segments of
uniform size; (ii) based on the output labels of S4B . This gives us a start-
ing segmentation, that we transfer to the second shape using the corre-
spondences provided by BIM.

Implementation details.

For S4B , we fix 8 possible biclusters, and the affinity matrix is computed
as described in [49], with the same descriptors HKS and WKS. For the
geodesic similarities, we considered as “near” only distances below 5% of
the maximum. Notice that if we turn off the spatial smoothness prior, we
obtain a standard biclustering algorithm, hereafter referred to as spike
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Stable
Region

BIM
Voronoi

BIM
S4B SSBi S4B

scenario1 95.37 95.87 97.98 29.91 97.36

scenario2 85.34 95.35 94.21 30.39 95.73

scenario3 85.39 92.51 92.5 32.32 94.25

global 86.58 93.26 93.36 31.8 94.8

Stable
Region

BIM
Voronoi

BIM
S4B SSBi S4B

scenario1 94.95 96.76 97.84 30.07 97.98

scenario2 87.42 96.17 93.82 30.95 96.63

scenario3 87.63 92.82 92.55 33.77 94.96

global 89.33 93.1 93.15 31.26 95.52

Table 4.1: Results on the FAUST dataset using SRC, BIM, SSBi, and the proposed S4B
. Scenario1: pairs of shapes of the same subject in different poses. Scenario2: pairs of
different subjects in the same pose. Scenario3: pairs of different subjects in different
poses. The left/right tables show mean/median scores for each scenario, and the global
mean/median score.

and slab biclustering (SSBi). We used parameters that lead to similar
numbers of segments for each of the methods tested, for fairness of com-
parison. Once the method converges, we obtain the probability that each
vertex belongs to the retrieved biclusters. Finally, we assign each vertex
to the bicluster (and hence the label) maximizing that probability (dis-
carding labels with probability below 0.75).

Evaluation.

We randomly selected 50 pairs of shapes from the FAUST dataset and ap-
plied each of the previously mentioned methods. The results reported in
Table 4.1 show that S4B performs better than SRC, BIM, and SSBi. Par-
ticularly, S4B outperforms both the SRC and BIM-Voronoi approaches.
By comparing S4B and SSBi, we can state that the spatial prior is crucial
to obtain high quality results. All of these results have been statistically
evaluated with a paired T-test with significance level equal to 5%.

Figure 4.2 shows some of the results obtained: the first row shows re-
sults by the SRC method [49]; the second row shows results of SSBi; the
third row presents results of the new S4B . Clearly, the S4B results present
high coherence among the different pairs of shapes (although they have
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Fig. 4.2: Qualitative results of SRC, SSBi and S4B on the FAUST dataset.
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Fig. 4.3: Performances of S4B and SRC results when adopted to create a point-wise es-
timation map.

obviously been analysed independently), moreover they produce more
connected regions, unlike those obtained by SRC and SSBi.

S4B in the functional maps

The final goal for which we present this method is to improve the func-
tional maps framework using some stable region indicator functions in
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the functional constraints that define the optimization problem. S4B
gives us a possible set of indicator functions that could be used in the
functional maps framework. We thus compare the standard baseline
[115] (without region correspondences) with the regions provided by
both S4B and SRC. Figure 4.3 plots the performance of S4B and SRC, us-
ing the standard correspondence quality characteristic [76], as a function
of the radius r , with each point in the curves representing the matching
percentage considering only points that are at distant less than r from
their ground truth correspondence. This results show that the perfor-
mances clearly increase by adding the region indicators obtained from
S4B . Note that adding region indicators from SRC improves the baseline
results. However also the stability of our regions are clearly more infor-
mative since they produce a stronger improvement on the quality of the
functional maps.

4.3 Functional maps for brain classification

In this Section we exploit our functional kernel, a new functional maps
approach for brain classification. The functional representation of brain
shapes, or their subparts, enables us to improve the detection of morpho-
logical abnormalities associated with the analyzed disease. The proposed
method is based on the spectral shape paradigm that is largely used for
generic geometric processing but still few exploited in the medical con-
text. Moreover, we propose a new kernel, called the Functional maps ker-
nel (FM-kernel) for the Support Vector Machine (SVM) classification that
is specifically designed to work on the functional space. The obtained re-
sults for bipolar disorder detection on the putamen regions are promising
in comparison with other spectral-based approaches. More details about
this method can be found in [102].
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Overview and related work

With respect to the other parts of this thesis in this section we move from
the general geometry processing task to a specific applications field,
the medical imaging. Automatically detection of abnormal anatomical
shapes derived from diseased subjects is a fundamental goal in medi-
cal imaging. This task is typically formulated as a two-class classification
problem, assigning to each shape a healthy or diseased label [147] [148].
In particular, thanks to the increased amount of data available, the atten-
tion of researchers is often focused on advanced learning-by-example
methods [54] [57] [6] [25] [145] [27]. These tools require good shape
representation and measure that encodes the relationship between the
shapes. The desired representation should be informative, concise and
efficient in computational terms. In order to capture possible brain de-
formations due to the disease, it is convenient to exploit geometry and
topology properties of the anatomical parts as shape representation [71]
[53] [52].To this aim, new spectral shape descriptors and methods have
been adopted in this area, aiming at investigating advanced shape analy-
sis approaches for the characterization of brain structures. A first method
based on spectral properties was proposed in [51], where spherical har-
monic descriptors (SPHARM) are computed on brain surfaces after a
shapes registration step. In [125] Reuter et al. introduced a spectral global
descriptor, namely Shape-DNA. This signature is defined as the increas-
ing ordered sequence of the first Laplace-Beltrami operator (LBO) eigen-
values. The Shape-DNA is invariant to the isometric deformations and
by neglecting higher frequencies of the shape it is also robust to noise.
This descriptor is proposed for two different versions: the external sur-
faces and the entire volume. The two surface-based and volume-based
versions are also introduced by Castellani et al. in [26] where the HKS
point signature, introduced in Chapter 3, has been extended to describe
the entire shape by leading to the so called Global Heat Kernel Signature
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(GHKS). Differently from Shape-DNA this approach is based on a point
signature that encodes local information. Furthermore the GHKS allows
a multi-scale analysis that enhances the discriminative properties of the
signature. Note that both the approaches [125] and [26] do not require an
explicit registration phase for shape comparison. In [96], a collection of
three well known spectral descriptors, HKS, WKS and the Scale Invariant
Heat Kernel Signature SI-HKS, [22] are computed at every vertex of the
mesh and then used in a Bag of features framework for spectral shape
analysis of brain structures in order to detect the Alzheimer's Disease.
The multiscale analysis is instead the basic idea of [150]. This approach
encodes the volumetric geometry information starting from the volu-
metric LBO and obtaining a multi-scale volumetric morphology signa-
ture which describes the transition probability by random walk between
the point pairs and depends on heat transmission time. Starting again
from the LBO eigendecomposition an interesting technique is recently
presented by Rabiei et al. in [124]. In this work the Graph Windowed
Fourier [137] is exploited to encode the geometric properties of the brain
cortex. More specifically, a Gyrification Index is introduced to represents
at every point how much the surface is folded. Shifting the focus on func-
tional spaces can be effective and productive as for example in [92]. This
work proposes a spectral framework namely Brain Transfer to transfer
functions between different shapes, in order to explore the shape and
functional variability of retinotopy. We propose a new method for shape
classification based on the Functional maps framework [115] that was
introduced in the previous Sections. The contribution of the proposed
method is two-fold:

− Firstly we extend the use of Functional map to the medical domain,
to improve the encoding of morphological relations between pairs of
brain-shapes.

− Secondly we propose a new dissimilarity measure properly designed
for the functional space. In particular, from this dissimilarity measure
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we derived a well defined new kernel, namely the Functional maps
kernel (FM-Kernel) that is effective and theoretically founded.

We evaluated our method for the characterization of brain abnormalities
in the context of mental health research. In particular, we propose a brain
classification study on a dataset of patients affected by bipolar disorder
and healthy controls. We focused on the putamen region, which is a deep
gray matter brain structure, part of the basal ganglia, a functional and
anatomical heterogeneous region which is thought to be affected, partic-
ularly in shape, by bipolar disorder [66]. In order to check the actual ef-
fectiveness of the proposed method and the richness added by the Func-
tional maps framework in this context, we compared our method with
more classical shape analysis methods based on a spectral approach.

4.3.1 Proposed Method

In this subsection we show the main contributions of our paper that are:
i) the design of a Functional maps framework on the spectral domain
for brain comparison, and ii) the customized Functional maps kernel for
brain classification.

Computing Functional Maps

As mentioned in Section 4.1, we can approximate the Functional map
C taking into account two sets of linear constraints. In particular, such
constraints are defined by pairs of corresponding functions and by op-
erators that satisfy the commutativity property with respect to C . In this
work we assume that in the absence of disease and disorders the brain
surfaces are closer to isometric shapes with respect to the variations
caused by the presence of disturbances. Therefore, for shapes belonging
to the same class it is possible to find a map Π that can be approximated
by an isometry. Thus, a good approximation of the Functional maps, in
order to detect disorders, can be computed starting from isometry in-
variant descriptors and operators. This is the motivation that has driven
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Fig. 4.4: Distribution of WKS values for several shapes of putamen region and energy
values. From left to right E = 10,140,180. Lines 1 and 2 subjects with bipolar disorder,
lines 3 and 4 normal controls.

our choices of function and operator constraints. We adopt the original
constraints proposed by the authors in [115]. They adopted the LBO for
the operator commutativity and as functions constraint the two spec-
tral point descriptors HKS and WKS, introduced in Chapter 3, that are
known to be stable and invariant to isometries. Some of these signatures
are shown in Figure 4.4.
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4.3.2 Functional maps kernel

As shown in Section 4.1, we can estimate the map C for every pair of sur-
faces (M ,N ), fixing as basis the LBO eigenfunctions of these surfaces.
For the sake of clarity we denote with CM ,N the map between M and
N . Now, we need a specific kernel based on this map to perform our
classification task. Given the the pair (M ,N ), we compute two maps: i)
CM ,N defined from L2(M ) to L2(N ) and, ii) the inverse CN ,M . Clearly
the exact Functional map from a functional space L2(M ) to itself is the
identity map I dM .

If the estimated maps are correct we can draw the following commu-
tative diagram:

L2(M ) CM ,N L2(N )

I dM CN ,M

L2(M )

This diagram shows that a function should remain the same when it is
moved from shape M to N , and than put it back to M again.

In order to quantify how well the maps CM ,N and CN ,M have been
calculated, we can define the following measure:

||CN ,MCM ,N − I dM ||F , (4.13)

which tells us how much the previous diagram is actually commutative.
Now we infer that if two surfaces are in the same class, i.e. they do not
differ sensibly, we can compute CM ,N and CN ,M in a sufficiently exact
way, such that CM ,N CN ,M ≈ I dM . Thus for surfaces that belongs to the
same class we obtain small value in the equation 4.13, conversely these
score will be higher if the surfaces come from different classes. At this
point we can advisedly define the following distance function:
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d(M ,N ) = 1

2
(||CN ,MCM ,N − I dM ||F +||CM ,N CN ,M − I dN ||F ). (4.14)

This distance function has the following nice properties:

− Symmetry: d(M ,N ) = d(N ,M ), ∀M ,N .
− Zero diagonal: d(M ,M ) = 0, ∀M .
− Nonnegativity: d(M ,N ) ≥ 0, ∀M ,N .

Thanks to this properties and referring to [58] we can define a distance
substitution kernel on the distance d , that we will call Functional maps
kernel (FM-kernel). Given a collection of surfaces {Mi }i∈I we define the
FM-kernel as:

K (i , j ) = e−γd(Mi ,M j )2
,∀i , j ∈ I . (4.15)

As shown in [58] the obtained kernel can be successfully applied in SVM
for classification.

4.3.3 Results

In this Section we show how the Functional maps framework together
with our new FM-kernel improve the brain classification performance
on the spectral domain. With this aims we explore the comparison with
all the spectral methods that are more related to our framework. We also
report the results obtained using different classifiers, namely the Support
Vector Machines (SVM) and the Nearest Neighbour (NN) classifier.

Materials

We analyze a dataset of patients affected by bipolar disorder and healthy
control subjects. More precisely, 34 control subjects (22 males, 29 +/- 5
years old (y.o.)), 34 patients affected by bipolar disorder (15 males, 45
+/- 13 y.o.) underwent an MRI session. MRI data were obtained using a
Siemens 3.0 T Magnetom Allegra MRI scanner (Siemens Ag). The follow-
ing parameters were used for T1-weighted images: 256 x 256 x 256 voxels,
1×1×1 mm3, TR 2060 ms, TE 3.93 ms, flip angle 15 degree. Cortical and
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Fig. 4.5: A couple of putamen surfaces and two WKS descriptors computed on them.
Through the C map calculated using the Functional maps framework, we transport the
function defined on the first shape to the second one and as shown we achieve a good
approximation of the desired function on the second shape.

subcortical surfaces were obtained using FreeSurfer version 4.3.11 [38].
First, non-brain tissues were excluded, then images were segmented into
white and gray matter (WM and GM respectively), and then, meshes of
the boundaries between WM and GM and between GM and CSF were
estimated. We focused on the putamen, a deep gray matter brain struc-
ture, which is thought to be modified in the shape in subjects that are
affected by bipolar disorder [66]. The process encoded by the functional
map framework is shown in Figure 4.5. The function defined on the first
shape is represented by the WKS descriptor. Such function is map to the
second shape by using C by showing that the transported WKS values are
very similar to the original one.

Comparison with other methods

We compare our method with the state of the art spectral methods. In
order to establish how much the Functional maps framework and the
proposed FM-kernel improve the classification results, we select meth-

1 http://surfer.nmr.mgh.harvard.edu/
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ods that encode the same information used in our Functional maps con-
struction. We consider the Shape-DNA (S-DNA) descriptor [125], i.e., the
increasing ordered sequence of the first LBO eigenvalues. We evaluate
also the so called Global Heat Kernel Signature (GHKS) [26], a multi-
scale histogram representation of the pointwise HKS. Similarly, we de-
fine the Global Wave Kernel Signature (GWKS) based on the WKS. Finally,
since in our method the information coming from LBO, HKS, and WKS
is integrated into the same framework we carried out a further evalua-
tion with descriptors obtained by the concatenation of GHKS and GWKS
(GHKS+GWKS), or GHKS, WKS and S-DNA (ALL3desc).

Comparison with different classifiers

we show the results obtained by different choices of classifiers. Specifi-
cally, we adopt a K-Nearest Neighbor (KNN) classifier, with k = 6 and the
standard SVM classifier using LIBSVM [28]. A cross-validation scheme is
introduced to estimate the SVM parameters as suggested in [28].

Classification Results

Method: Ours S-DNA GHKS GWKS GHKS+GWKS ALL3desc

SVM 72.06 70.59 67.65 69.12 69.12 70.59

KNN 64.71 60.29 63.24 61.76 60.29 63.24

Table 4.2: Results in classification for the bipolar disorder on the putamen shapes. The
evaluated methods are SVM and KNN classifiers

Table 4.2 shows the results. Our proposed approach outperforms all
the other methods, also in their joined version. This confirm our claim
that performing the classification on the functional space improves the
results. Nevertheless, our method performed at best for both SVM and
KNN showing its independence from the choice of classifier. Since the
proposed FM-kernel is designed specifically for the SVM classifier it does
not surprise that the best performance was obtained with this classifier.
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4.3.4 Limitations and future work

In this application the Functional maps approach for brain classifica-
tion in the spectral domain is proposed. We introduced a specific kernel
for SVM classification, namely the FM-kernel, based on the integration
among different spectral shape analysis operators and descriptors. We
evaluated our new classification method for bipolar disorder detection
on the putamen regions by showing very promising results in compari-
son with other spectral-based approaches. As future works we consider
to learn more suitable spectral descriptors for specific tasks as suggested
in [36]. In particular, we will focus on the reduction of the importance
of the isometry constraint between shapes that is difficult to justify from
the clinical point of view even if it is working well in practice. We could
also include further information related to the anatomical structure as
additional constraints for the Functional maps framework such as the
parts of a prior available shape segmentation procedure. Moreover, we
will consider that the major variability is for the non-healthy subjects
and therefore a new classifier based on the training of a single class (the
healthy one) will be considered. Finally, a more exhaustive clinical eval-
uation will be carried out by exploring other brain regions and by enlarg-
ing the cohort of available subjects.
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Localized spectral geometry processing

The advantages of spectral frameworks is that they are completely intrin-
sic by construction and work only with eigenvalues and eigenfunctions of
the LBO, thus naturally allowing to deal with shapes in any representa-
tion, e.g. meshes or point clouds. The main idea of this Chapter is to for-
mulate the classical time-frequency analysis to signals lying on a 3D sur-
face. Classically the goal of the time-frequency analysis is to obtain a good
localization in the time together with a good localization in the frequency
domain. In this thesis instead of the localization in time we consider the
spatial localization on the surface. In this fashion we obtain a local fre-
quency representation which encodes effectively and efficiently the local
"context" of a given point. The goal of the work collected in this Chapter is
to propose methods to face the uncertainty principle introduced in Chap-
ter 2. In other words we would like to be able to analyze the signal defined
on the surface with a good localization both in the spatial and in the spec-
tral domain.

5.1 Need for spectral localization

In this Chapter we briefly point out the motivations for the windowed
Fourier transform (WFT) in the classic case. As we saw in the Chapter 2
the Fourier transform suffers from the so-called uncertainty principle. In
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a nutshell the Fourier transform is not able to produce an analysis local-
ized simultaneously in the time and in the frequency domain. The main
idea of WFT is to first isolate a local part of the signal (in the classic case
using a short temporal window), then analyze only the spectral repre-
sentation of the localized signal instead of considering the entire original
signal. By isolating a part of the signal, the temporal (spatial) localization
is achieved while the spectral localization guaranteed by the used basis
is maintained.

5.2 Windowed Fourier transform

In this Section, we propose a new framework for constructing class-specific
dense intrinsic shape descriptors based on vertex-frequency analysis [138].
The core of our construction is the windowed Fourier transform, allowing
to capture local context around a point on a surface and represent it in
the frequency domain. Combined with a learning framework reminiscent
of convolutional neural networks, we are able to learn discriminative and
robust descriptors that are specific to a given class of shapes. There are dif-
ferent important factors that must be defined to design the descriptor: i)
the initial signal, ii) the window function, iii) the range of frequencies.

5.2.1 Overview

As we saw before the Fourier basis functions used to compute frequency
representations of signals, are the eigenfunctions of the Laplace oper-
ator. This interpretation allows to naturally generalize Fourier analysis
to non-Euclidean domains (manifolds or graphs) by considering the re-
spective Laplacian of these domains [87]. Signal processing on geomet-
ric data is an active field of research since the seminal work of Taubin
[143], introducing a Laplacian-based approach for mesh smoothing. His
approach found extensive application in several other mesh process-
ing tasks, including mesh parametrization [108] and progressive meshes
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[65], and mesh compression [74] to name a few (we refer to [87] for an
excellent survey). In the area of shape analysis, recent efforts concen-
trated on the definition of spectral isometry-invariant shape descriptors
for matching and retrieval purposes [21,125,133]. In [125] a global shape
descriptor was proposed (Shape-DNA). In [133] the so-called global point
signature (GPS) was introduced to encode the relation between a sin-
gle point and all the others on the surface. Of particular interest is the
family of spectral methods that build upon the ideas of diffusion ge-
ometry [35] in order to encode local geometric structures. Examples of
such methods include the heat kernel signature (HKS) [50, 140] and the
wave kernel signature (WKS) [5]. Another interesting approach was pro-
posed in [79] where the intrinsic local “context” has been defined for 3D
points. It is worth noting that the majority of spectral methods rely on
a global frequency analysis, considering the Laplacian eigenfunctions as
the basis. Localized Fourier analysis (a standard construction in signal
processing known as the short-time or windowed Fourier transform) has
recently been done on graphs [138]. The Fourier approach has been suc-
cessfully applied for localized frequency analysis for 2D image recogni-
tion tasks [12], where the spectral information is used to define effec-
tive local image descriptors. For all these reasons we focus on the defini-
tion of a localized Fourier analysis on surfaces extending the windowed
Fourier framework on 3D shapes for point-to-point matching. In this
Section we explore the use of localized frequency analysis (a generaliza-
tion of the windowed Fourier transform to manifolds) for the design of
intrinsic shape descriptors. Applying the windowed Fourier transform to
some dense intrinsic descriptor adds a local "context" capturing richer
geometric structures. The resulting local frequency representations are
then passed through a bank of filters whose coefficient are determined
by a learning procedure minimizing a task-specific cost. Conceptually,
our approach is reminiscent of convolutional neural networks (CNN),
and also generalizes several previous methods such as spectral CNN and
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GPS embeddings. Our experimental results show that the proposed ap-
proach allows learning class-specific shape descriptors significantly out-
performing recent state-of-the-art methods on standard benchmarks.

5.2.2 Standard Windowed Fourier transform

A central piece to our construction of shape descriptors is the notion of
windowed Fourier transform (WFT), generalizing this construction from
classical signal processing to non-Euclidean domains. Here, we follow
the approach of Shumann et al. [138] for the generalization of the WFT
in the spectral domain. We note that in principle other methods for hi-
erarchical and local frequency analysis on graphs or manifolds can be
used instead of the presented construction, including wavelets [35] or
compressed modes [110].

Classical WFT

The main idea of classical WFT is to analyze the frequency content of a
signal that is localized by means of multiplication by a window. Given a
function f ∈ L2(R) and some ‘mother window’ g localized at zero, one
computes the WFT as

(S f )x,ω =
∫
R

f (x ′)g (x ′−x)e−i x′ωd x ′. (5.1)

Note that the WFT has two indices: spatial location x of the window
and frequency ω of the signal in that window. Alternatively, it can be
presented as an inner product with a translated an modulated window,
(S f )x,ω = 〈 f , MωTx g 〉L2(R), where Tx and Mω denote the translation and
modulation operators, respectively.

Translation operator

In the Euclidean setting translation is simply (Tx′ f )(x) = f (x − x ′). In or-
der to generalize it to manifolds, translation to point x ′ ∈ M can be re-
placed by convolution with a delta-function centered at x ′, yielding
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(Tx′ f )(x) = ( f ∗δx′)(x)

= ∑
k≥1

〈 f ,φk〉L2(M )〈δx′,φk〉L2(M )φk(x)

= ∑
k≥1

f̂kφk(x ′)φk(x), (5.2)

where convolution is understood in the generalized sense of equation 2.12
and from the standard definition in equation 2.5. Note that such a trans-
lation is not shift-invariant in general, i.e., the window would change
when moved around the manifold (see Figure 5.1).

Modulation operator

Modulation in the classical case is a multiplication by a basis function
(Mω f )(x) = e iωx f (x). In the Fourier domain, the action of modulation
amounts to translation (�Mω′ f )(ω) = f̂ (ω−ω′). In the generalized case,
the modulation is defined in exactly the same way,

(Mk f )(x) = φk(x) f (x), (5.3)

where the eigenvalue λk corresponding to the eigenfunction φk plays the
role of ‘frequency’.

Manifold WFT

Combining the two operators together, we have the modulated and trans-
lated window (transform ‘atom’; see examples in Figure 5.1) expressed as

gx′,k(x) = (MkTx′g )(x) =φk(x)
∑
l≥1

ĝ lφl (x ′)φl (x). (5.4)

Note that the ‘mother window’ is defined here in the frequency domain
by the coefficients ĝ l . We thus readily have the WFT of a signal f ∈ L2(M )

(S f )x,k = 〈 f , gx,k〉L2(M ) =
∑
l≥1

ĝ lφl (x)〈 f ,φlφk〉L2(M ), (5.5)
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with equation 5.5 the WFT is extended to surfaces.
The WFT can be regarded as a meta-descriptor: given some dense de-
scriptor f (e.g. one of the components of HKS, WKS, or a geometry vec-
tor (3.16)), we construct D(x) f = ((S f )x,1, . . . , (S f )x,K )> taking the first K
frequencies of the WFT. The WFT allows to capture the local context of a

ĝ1
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eigenvalues
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Fig. 5.1: Examples of different WFT atoms gx,k using different windows (top and bot-
tom rows; window Fourier coefficients are shown on the left), shown in different local-
izations (second and third columns) and modulations (fourth and fifth columns).

signal on the manifold, making it roughly analogous to taking the values
of the signal in a small “patch”; here D(x) acts as a position-dependent
“patch operator” representing the local structure of f around point x in
the frequency domain.

Special cases

We would like to point out the following special cases of the WFT, which
show that this framework can be considered as a generalization of several
previous approaches.
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Case I: when ĝk = δk1, we simply have gx′,k(x) = φk(x)φ1(x ′)φ1(x).
Since the first LBO eigenvector is constant, the atom (up to scaling) is
gx′,k(x) ∝ φk(x), i.e., the standard LBO eigenbasis element independent
on the location x ′. The WFT thus reduces to a simple Fourier trans-
form (2.11). This result is an intuitive consequence of the uncertainty
principle: when the window is perfectly localized in the frequency do-
main, it is perfectly delocalized in the spatial domain .

Case II: when f ≡ 1, the WFT contains information only about the ge-
ometric structure of the manifold. In this setting,

(S1)x,k = ∑
l≥1

ĝ lφl (x)〈φk ,φl〉L2(M )︸ ︷︷ ︸
δkl

= ĝkφk(x), (5.6)

and for a particular choice of ĝk = λ−1/2
k we get Rustamov’s GPS descrip-

tor (2.16). Case III: when f = δx , the DC frequency of the WFT has the
form of (3.14),

(Sδx)x,1 =
∑
l≥1

ĝ lφ
2
l (x), (5.7)

and in particular for ĝ l = exp
(

logν−logλl
2σ2

)
we obtain the WKS and for ĝ l =

e−tλl the HKS at point x, respectively.

Discretization

The discretized WFT is computed as

Sf = (f�Φ)>AΦ(ĝ�Φ>), (5.8)

where ĝ is the K -dimensional vector representing the window in the fre-
quency domain, f is the N -dimensional vector representing the input
function, and (a�B)i j = ai bi j denotes element-wise multiplication of
a vector and matrix, replicating the vector along the second dimension
(repmat in MATLAB). The resulting WFT is a matrix of size K ×N .
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Fig. 5.2: WFTs computed on the constant function on two different poses of the same
shape at two points marked in orange and blue.

5.2.3 Localized spectral CNN

Note that the definition of the WFT atoms involves the basis functions
{φi }i≥1, therefore, in principle, they are susceptible to change if the Lapla-
cian eigenbasis changes. In particular, eigenfunctions sign flips can change
the sign of the WFT. However, at the same time it is known that Lapla-
cian eigenfunctions tend to change according to certain patterns, which
can be modelled and taken advantage of [122]. In general, the WFT is
not completely invariant, i.e., the descriptors at corresponding points of
isometric shapes may differ as can be seen in Figure 5.2. In this section
we describe a learning framework that allows to account for this variabil-
ity. The architecture of our descriptor bears similarity with convolutional
neural networks (CNN) [23,83,99] that are now very popular in computer
vision applications, and has a layered structure, wherein the output on
one layer is used as the input of the next one.

Convolutional neural networks [82] are hierarchical architectures built
of alternating convolutional, pooling (non-linear averaging), and fully
connected layers. The parameters of different layers are learned by min-
imizing some task-specific cost function. In image analysis applications,
the input into the CNN is a function representing pixel values given on
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a Euclidean domain (plane); due to shift-invariance the convolution can
be thought of as passing a template across the plane and recording the
correlation of the template with the function at that location. One of the
major problems in applying the CNN paradigm to non-Euclidean do-
mains is the lack of shift-invariance, making it impossible to think of con-
volution as correlation with a fixed template: the template now has to be
location-dependent. Here, we propose using the WFT as a mechanism
for extracting local ‘patches’ from functions defined on manifolds. We
can think of D(x) f = ((S f )x,1, . . . , (S f )x,K ) as a position-dependent “patch
operator” representing the local structure of f around point x in the fre-
quency domain. The spatial support of the ‘patch’ depends on the choice
of the window g . Note that in the definition of the WFT the geometric
structure of the manifold is captured by the Laplace-Beltrami eigenfunc-
tions. As a result, the same framework can be used for any shape repre-
sentation (e.g. mesh, point cloud, etc.): the specific representation of the
shape influences only the construction of the Laplace-Beltrami operator.

We refer to our approach as localized spectral CNN (LSCNN). For the
sake of simplicity, the neural network architecture considered in the fol-
lowing consists of only two layers (comparable with the SN1 architec-
ture in [99]). The first layer is a fully connected layer, producing outputs
as weighted sums of the inputs, followed by a non-linear function. The
second layer applies the WFT to extract the local structure of the input
around each point. Since each input dimension might contain features
of different scale, we employ a different window for each input dimen-
sion. The WFTs are then passed through a bank of filters applied in the
frequency domain, producing the outputs used as the descriptor dimen-
sions. As the input to the first layer, any intrinsic descriptor can be used
(specifically, we use geometry vectors defined in equation (3.16)). All the
parameters of the layers (weights, windows coefficients, and filters) are
variables that are found by means of supervised learning.
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Fully connected layer

Let us be given a P-dimensional input fin(x) = ( f in
1 (x), . . . , f in

P (x)). The
fully connected layer produces a Q-dimensional output defined as

f out
q (x) = ξ

(
P∑

p=1

K∑
k=1

wqp f in
p (x)

)
, q = 1, . . . ,Q, (5.9)

where ξ(t ) = max(0, t ) is the ReLU activation function. Note that with-
out ReLU, if the inputs are geometry vectors, learning the weights of the
fully connected layer is equivalent to the OSD [90]. Fixing weights cor-
responding to low- or band-pass filters, the fully connected layer imple-
ments the HKS and WKS, respectively.

Convolutional layer

Next, the output of the fully connected layer acts as the input into the
convolutional layer; we denote the input again by fin(x) and its dimen-
sion by P . For each input dimension, we use a different window. The
family of P windows is parametrized in some fixed interpolation basis
in the frequency domain as in (3.15),

γp(λ) =
M∑

m=1
bpmβm(λ), p = 1, . . . ,P, (5.10)

where the P ×M matrix (bpm) of weights defines the windows. Figure 5.3
shows an example of the estimated windows after the learning. The WFT
of the pth input dimension uses the respective pth window,

(S f in
p )x,k = ∑

l≥1

γp(λl )φl (x)〈 f in
p ,φlφk〉L2(M ), (5.11)

producing at each point a K -dimensional vector for each of the P input
dimensions. Our goal is to produce a Q-dimensional output, and for this
purpose, the WFTs are passed through a bank of filters. The qth dimen-
sion of the output is given by
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Fig. 5.3: Example of a family of windows ĝ1, . . . , ĝP learned by the LSCNN on the FAUST
dataset.

f out
q (x) =

P∑
p=1

K∑
k=1

aqpk |(S f in
p )x,k |, q = 1, . . . ,Q. (5.12)

The output of the convolutional layer is used as our final LSCNN descrip-
tor.

Loss function

The LSCNN comprising the fully-connected and convolutional layer is
a parametric hierarchical system fΘ(x) producing a Q-dimensional de-
scriptor at each point x (here Θ = {(wqp), (bpm), (aqpk)} denotes the set
of learnable parameters). Given a training set of knowingly similar and
dissimilar pairs of points on pairs of shapes, respectively positives T + =
{(x, x+)} and negatives T − = {(x, x−)}, we aim at estimating the optimal
task-specific parameters of the descriptor minimizing the aggregate loss

`(Θ) = (1−µ)`+(Θ)+µ `−(Θ) (5.13)

where

`+(Θ) = 1

|T +|
∑

(x,x+)∈T +
‖fΘ(x)− fΘ(x+)‖2

2, (5.14)

`−(Θ) = 1

|T −|
∑

(x,x−)∈T −
max{0, M −‖fΘ(x)− fΘ(x−)‖2},

are the positive and negative losses, respectively, µ is a parameter gov-
erning their trade-off, and M is a margin mapping the negatives apart.
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We stress that HKS, WKS, and OSD descriptors are obtained by a partic-
ular choice of the parameters Θ. Thus, if the training set is designed well
and training is performed correctly, our descriptor can perform only bet-
ter than the above.

Comparison to ShapeNet

Masci et al. [99] introduced ShapeNet, a generalization of CNN to trian-
gular meshes based on geodesic local patches. The core of this method is
the construction of local geodesic polar coordinates using a procedure
previously employed for intrinsic shape context descriptors [79]. The
patch operator (D(x) f )(θ,ρ) in ShapeNet maps the values of the func-
tion f around vertex x into the local polar coordinates θ,ρ, leading to
the definition of the geodesic convolution

( f ∗a)(x) = ∑
ρ,θ

a(θ+∆θ)(D(x) f )(θ,ρ), (5.15)

which follows the idea of multiplication by template, but is defined up to
arbitrary rotation ∆θ ∈ [0,2π) due to the ambiguity in the selection of the
origin of the angular coordinate. In the ShapeNet convolutional layer, the
outputs corresponding to all the rotations of the templates are produced
and then a maximum is taken,

f out
q = max

∆θ

P∑
p=1

f in
p ∗a∆θ,qp , (5.16)

where a∆θ(θ,ρ) = a(θ +∆θ,ρ) denotes the coefficients of the template
rotated by ∆θ, and the convolution is in the sense of equation (5.15).

We note the following main drawbacks of this construction. First, the
charting method relies on a fast marching-like procedure requiring a
triangular mesh. The method is relatively insensitive to the triangula-
tion, but may fail if the mesh is very irregular. Second, the radius of the
geodesic patches must be sufficiently small compared to the convexity
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radius of the shape, otherwise the resulting patch is not guaranteed to be
a topological disk. In practice, this limits the size of the patches one can
safely use, or requires an adaptive radius selection mechanism. In con-
trast, the proposed localized spectral CNN is free of these limitations: it
can work with any shape representation, provided one can compute the
discretized Laplace-Beltrami operator and its eigenfunctions and eigen-
values for this representation; since the patch operator is constructed in
the frequency domain using the WFT, there is also no issue related to the
topology of the patch.

5.2.4 Results

Datasets

We used two datasets of scanned human shapes in different poses: SCAPE
[4] and FAUST [13] already introduced in Chapter 2. The meshes in
SCAPE were resampled to 12.5K vertices, whereas for FAUST we used
the registration meshes without further pre-processing. In addition we
scaled all shapes to have unit geodesic diameter.

Methods and Settings

In all our experiments, we used K = 300 LBO eigenfunctions and eigen-
values computed using MATLAB eigs function. For OSD and our descrip-
tor, we used M = 150-dimensional geometry vectors as inputs, computed
according to (3.15)–(3.16) using B-spline bases [90]. We compared the
performance of the proposed approach to HKS [140], WKS [5], OSD [90],
spectral CNN (SCNN) [23], and ShapeNet (SN1) [99] using the code and
settings provided by the respective authors. To make the comparison
fair, all the descriptors were Q = 16-dimensional as in [90]. Our descrip-
tor was tested in two configurations. LSCNN1, consisting of a fully con-
nected layer (reducing the dimensionality of the 150-dimensional input
to 16 dimensions), followed by a convolutional layer using a fixed WFT
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Gaussian window γ(λ) = e− λ2

2σ2 withσ= 10−5. In this configuration the pa-
rameters of the network that are learned are Θ= {(wqp), (aqpk)}. LSCNN2
is similar to LSCNN1, with the difference that now the WFT windows are
also learned. We use 16 filters (one per dimension), each represented by
the B-spline coefficients. In this configuration, the free parameters are
Θ = {(wqp), (bpm), (aqpk)}. Furthermore, as a ‘sanity check’, we also used
a configuration without the convolutional layer, comprising only a fully
connected+ReLU layer (referred to as NN1). This architecture is compat-
ible with the OSD, with the addition of a non-linearity at the output.

Training

Each dataset was split into disjoint training, validation, and test sets. On
the FAUST dataset subjects 1–7 were used for training (10 poses per sub-
ject, a total of 70 shapes), subject 8 (10 shapes) for validation, and subject
9–10 for testing (total of 20 shapes). On SCAPE, we used shapes 20–29
and 50–70 for training (total 31 shapes), five different shapes for valida-
tion, and 40 remaining shapes for testing. The positive and negative sets
of vertex pairs required for training were generated on the fly, to keep the
storage requirements for the training algorithm, via uniform stochastic
sampling. Each point on the first shape has only a single ground truth
match (given by the one-to-one correspondence) and is assigned to one
out of N −1 possible negatives: first, sample two shapes, then form the
positive set with all corresponding points, and finally, form the negative
set with first shape vertices and a random permutation of the ones of
the second shape. This strategy differs from [90] who considered only
points on the same shape. The advantage of our sampling strategy is
that it allows learning invariance also across several poses and subjects.
LSCNN was implemented in Theano [11] and trained until convergence
using Adadelta [153], a stochastic first order method with automatic ad-
justment of the learning rate (step size). Training was performed for 250
epochs, each epoch consisting of 100 updates (stochastic gradient de-
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scent steps). In each update of the training, we used N positive and neg-
ative pairs, where N is the number of shape vertices.

Timing

Typical training times for the more complex descriptor (LSCNN2) are
around two hours on a NVIDIA TITAN Black GPU board and, at test time,
the system is able to produce a throughput of approximately 30K ver-
tices per second. The pre-computation of the LB operator and its eigen-
decomposition takes around 10s for a shape with 7K vertices.

Similarity map

Figures 5.4 (compare to Figure 2 in [90] and Figures 5–6 in [99]) depicts
the Euclidean distance in the descriptor space between the descriptor at
a selected point and the rest of the points on the same shape as well as its
transformations. Figure 5.5 shows another example of LSCNN on point
clouds, where the WFT was computed using the graph Laplacian. Our
approach shows a good tradeoff between localization (similar to HKS)
and accuracy (less spurious minima than WKS and OSD), as well as ro-
bustness to different kinds of noise.

Descriptor evaluation

We evaluated the descriptor performance using the cumulative match
characteristic (CMC) and the receiver operator characteristic (ROC). The
CMC evaluates the probability of a correct correspondence among the
k nearest neighbors in the descriptor space. The ROC measures the per-
centage of positives and negatives pairs falling below various thresholds
of their distance in the descriptor space (true positive and negative rates,
respectively). The correspondence quality possible with our descriptors
was evaluated using the Princeton protocol [76], plotting the percentage
of nearest-neighbor matches that are at most r -geodesically distant from
the ground truth correspondence.
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Heat Kernel Signature (HKS)

Wave Kernel Signature (WKS)

Optimal Spectral Descriptor (OSD)

Single layer ShapeNet (SN1)

Localized Spectral Convolutional Neural Network (LSCNN)

Fig. 5.4: Distance map in the descriptor space. A point on the reference shape (leftmost)
is compared to all other points on the same and on other shapes. Shown left-to-right:
reference shape from FAUST dataset, different pose of the same shape, different sub-
ject in the same dataset, two shapes from SCAPE dataset, Gaussian noise, heavy sub-
sampling, voxelization noise, topological noise (glued fingers and missing parts). Small
distances in the descriptor space correspond to cold colors.



91

Fig. 5.5: Distance map in the descriptor space computed using LSCNN on point clouds.
A point on the reference shape (leftmost) is compared to all other points on the same
and on other shapes (four from SCAPE and four from FAUST datasets). Small distances
in the descriptor space correspond to cold colors.
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Fig. 5.6: Performance of descriptors trained on a subset of FAUST dataset and tested on
a disjoint subset of FAUST dataset.

The performance evaluation is depicted in Figures 5.6–5.8. We observe
that NN1 (fully connected layer+ReLU) outperforms the OSD, which we
attribute to the non-linearity. We see further significant improvement
from using a convolutional layer (LSCNN1 and LSCNN2). Furthermore,
we observe that LSCNN generalizes better to data from a different dataset
(transfer learning from FAUST to SCAPE) compared to ShapeNet. In this
Section we propose a new shape descriptor for local frequency analysis
on the 3D surface domain. We show that the Windowed Fourier Trans-
form can be extended to discretized 3D manifold by leading to a very
expressive and well localized intrinsic feature point descriptor. In partic-
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Fig. 5.7: Performance of descriptors trained on a subset of FAUST dataset and tested on
SCAPE dataset.
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Fig. 5.8: Performance of descriptors trained on a of SCAPE dataset and tested on a dis-
joint subset of SCAPE dataset.

ular, the exploration of a learning based framework has demonstrated its
strength and versatility in designing the desired behaviour of the pro-
posed descriptor. Broadly speaking we believe that our approach will
open new perspective of the use of advanced signal processing tech-
niques on non Euclidean domain like the 3D shapes. For more details,
please refer to [14].
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Limitations

The construction of class-specific descriptors tacitly assumes that all
shapes in the class share some common geometric structure, and their
Laplacian eigenbasis, up to known ambiguities, do not differ arbitrarily.
We hypothesize that if one tries to deal with a class that is too broad (e.g.
all mechanical objects, or all living things), the performance advantage
of our method over ‘hand-crafted’ descriptors such as HKS and WKS will
diminish, and it is likely that we will learn these descriptors (as they are a
particular configuration of our network). The learning based framework
being supervised, it depends on the data available.

Extensions

The spectral formulation of our framework allows application to a broad
range of geometric structures, such as point clouds or even abstract
graphs and networks. Constructing an analogy of successful convolu-
tional neural networks on such domains has been elusive so far, as there
is no clear notion of a local ‘patch’ and its representation. We believe that
our approach could be the right path towards this goal.

This work highlights how important is the effect of LBO eigenbasis am-
biguity in the spectral shape decompositions, (an example can be seen in
Figure 5.2). Our class-specific learning approach is able to overcome this
limit but still some open issues remain, especially for high generaliza-
tion purposes. Generally the only reliable eigenbasis are those associated
to the first eigenvalues by leading to a simplified encoding of the shape
composed of low frequencies (i.e., mean shape). Some method to include
a matching of eigenbasis in the learning framework will be addressed as
future work. Alternatively we might look for other methods to avoid this
heavy dependence on the LBO eigenbasis ambiguity. A first alternative is
proposed in the following Section.
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5.3 Anisotropic windowed Fourier transform

In the spirit of the previous WFT method, we proposed a new version of
the windowed Fourier transform on surface, that could work without the
learning based framework defined for the previous LSCNN method. In or-
der to enrich the content of the obtained analysis we add an orientation
sensitive property to the WFT tool. We propose the Anisotropic Windowed
Fourier Transform (AWFT), a framework for localized and orientation-
sensitive space-frequency analysis of deformable 3D shapes. With AWFT,
we are able to extract meaningful intrinsic localized orientation-sensitive
structures on surfaces, and use them in applications such as shape seg-
mentation, salient point detection, feature point description, and match-
ing. We also propose an aggregation strategy to address the problem of
the LBO eigenbasis ambiguity, that was solved with a learning strategy in
LSCNN. Our method outperforms previous approaches in the considered
applications. With respect to the previous LSCNN, AWFT is therefore more
flexible in different applicative domains.

5.3.1 Overview and related work

As we saw in the Chapter 2 and in the previous Section, Fourier analysis
is a tool ubiquitously used in a wide range of problems in mathematics
and engineering and is the pillar of classical signal processing [97]. In
the previous Section we propose to extend the Windowed Fourier Trans-
form (WFT), a standard signal processing tool, on surfaces. In the previ-
ous Section, following a recent promising trend, the obtained descriptor
is based on the use of machine learning methods to learn optimal task-
specific feature descriptors from examples. To do that the convolutional
neural networks (CNN) are effectively exploited for 3D meshes and point
clouds. The use of machine learning methods to learn optimal task-
specific feature descriptors from examples is a growing field of research
[15, 89, 90, 131, 151]. In [90] the optimal point descriptor is proposed to
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learn point-to-point matching. In [89] a supervised version of the bag-of-
words approach is introduced for 3D shape retrieval. Finally, in [15] the
idea of anisotropic diffusion was defined to learn direction-sensitive fea-
ture descriptors. In this Section, we propose the Anisotropic Windowed
Fourier Transform (AWFT) for localized and orientation-sensitive analy-
sis on manifolds. Our method extends the previous ones of [138] and [14]
by adding directional information, resulting in a construction similar in
its spirit to the classical Gabor transform. We highlight that in AWFT, dif-
ferently from the previous Section, we accurately justify the WFT param-
eters by avoiding to delegate this task to the learning procedure. We show
that in many cases the additional information captured by the AWFT is
very beneficial. We demonstrate the utility of the proposed method on
three common shape analysis tasks: segmentation, salient point detec-
tion, and the construction of intrinsic feature descriptors. Our results in
these applications compare favorably to the state of the art on standard
benchmarks.

5.3.2 Need for orientation-sensitive

As we said just above the AWFT is an orientation-sensitive tool for the
spectral analysis on manifold. Here we give just an example in order to
clarify why the orientation-sensitive property could improve the spec-
tral analysis of signal defined on surface. Lets start with the first row of
Figure 5.9. On the left we can see two signals that differ for a rigid ro-
tation in the 2D domain. Applying the rotation the two signal (first row
on the right) are exactly the same. Now on the left of the second row we
consider the two signals embedded inside a 2-dimensional cat shape.
In this case applying the same rigid rotation the two signal continue to
be different because of their relation with the cat shape. With AWFT we
would like to locally analyze signals that belong to some shape domain.
We would be able to recognize two signals that differ in the orientation
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Fig. 5.9: An example of signal for which is important the orientation-sensitive property.
First row two signal without any embedding that differ for a rigid rotation in the 2D
domain for example. Second row the same example of signals embedded inside a cat
shape. The two signals do not differ for a rigid rotation in this case due to the relation
with the shape on which the signals belong.

with which they appear on the surface. For this reason the orientation-
sensitive property could be very important.

5.3.3 Background

We start from the definition of the Laplace-Beltrami operator (or the
Laplacian) that is introduced in the Chapter 2:

∆M f (x) =−divM (∇M f (x)). (5.17)

Anisotropic Laplacian.

Andreux et al. [3] considered an anisotropic Laplace-Beltrami operator of
the form

∆M f (x) =−divM (D(x)∇M f (x)) , (5.18)

where D(x) acts on the intrinsic gradient direction in the tangent space,
represented in the orthogonal basis vM (x),vm(x) of principal curvature
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Fig. 5.10: Triangular mesh discretization. The orthogonal basis vectors vM ,vm , as well
as their rotated counterparts (in red), lie in the plane of the respective triangle (repro-
duced from [15]).

directions. In particular, the authors considered anisotropy along the
maximum curvature direction,

Dα(x) =
 1

1+α
1

 , (5.19)

where parameter α> 0 controls the level of anisotropy and is defined as
the ratio between vM and vm directions. Boscaini et al. [15] considered
anisotropic Laplacians with anisotropy at angle θ w.r.t. the maximum
curvature direction,

Dαθ(x) = RθDα(x)R>
θ , (5.20)

where Rθ is a rotation by θ in the tangent plane. The resulting Laplacian
operator

∆αθ f (x) =−divM (RθDα(x)R>
θ∇M f (x)) (5.21)

is the centerpiece of the construction proposed in this paper. Note that
these operators are not intrinsic, as they depend on the principal curva-
tures. However, if we consider all the possible angles θ ∈ [0,2π), up to the
choice of the origin of θ, the result becomes intrinsic.



98

5.3.4 Proposed method

The main drawback of standard Fourier analysis is that the basis func-
tions are globally supported. As a result, it is practically impossible to lo-
calize a small spatial feature in the frequency domain. A common tech-
nique in signal processing, referred to as the Windowed Fourier Trans-
form (WFT, also known as Short-Time Fourier Transform or spectro-
gram) is to localize frequency analysis to a window, considering the
Fourier coefficients of a function for each window location. The result
is a combined space-frequency representation.

WFT on manifolds

Shumann et al. [138] and our previous Section generalized this construc-
tion to graphs and manifolds, respectively. The window g is defined in
the frequency domain and the WFT is computed as

(S f )ξi = 〈 f ,ρφi

∑
j≥0

ĝ jφ j (ξ)φ j︸ ︷︷ ︸
gξi (x)

〉L2(M ) (5.22)

= ρ
∑
j≥0

ĝ jφ j (ξ)〈 f ,φiφ j 〉L2(M ) ,

where gξi (x) is the window at position ξ modulated with the i th fre-
quency, referred to as an atom. We can think of it as a translated and
modulated version of g ,

gξi (x) = ρMi Tξg (x) = ρφi (x)(g ∗δξ)(x) .

ρ = (area(M ))1/2 is a normalization constant ensuring that the modula-
tion with DC is norm-preserving,

ρMi f (x) = ρφ0(x) f (x) = ρ
1

ρ
f (x) = f (x).

Note that (S f )ξi has two indices: spatial location ξ and frequency i .
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AWFT

While allowing for a localized frequency analysis, the WFT atoms are ag-
nostic to directional information (see Figure 5.11, left). Such information
can be introduced using the anisotropic Laplacian. Let

∆αθφαθ,i (x) =λαθ,iφαθ,i (x)

be the eigendecomposition of the anisotropic Laplacian with orthogonal
eigenfunctions φαθ,0,φαθ,1, . . . and corresponding non-negative eigenval-
ues 0 =λαθ,0 ≤λαθ,1 ≤ . . .. We define the anisotropic WFT as

(S f )ξαθi =
∑
j≥0

ĝαθ, jφαθ, j (ξ)〈 f ,φαθ,iφαθ, j 〉L2(M ). (5.23)

The atoms gξθi (x) (Figure 5.11, right) are direction-aware. One of the im-
portant consequences of direction-awareness is the fact that AWFT is ca-
pable of disambiguating intrinsic reflection symmetries, as will be dis-
cussed in the following.

Choice of the window.

The choice of the window allows for a tradeoff between spatial and fre-
quency localization (by virtue of the uncertainty principle, it is impos-
sible to achieve a perfect localization in both): a narrow window in the
frequency domain (rapidly decaying Fourier coefficients ĝi ) results in a
wide window in the spatial domain, and vice versa. We use a decaying
window

ĝαθ,i = e−τ(λαθ,i−λαθ,1) , (5.24)

where the parameter τ controls the decay rate (larger values of τ produce
windows with poorer spatial localization). In order to make this param-
eter scale-invariant, we recall that scaling the coordinates of the shape
uniformly by a factor β scales its area by β2 and Laplacian eigenvalues by
a factor of β−2. We therefore multiply τ by area(M ).
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Fig. 5.11: Some atoms of the AWFT on the point marked with small pink spheres on
the cat shape. These are obtained with τ = 0.002, the first on the left is the isotropic
window while the others are obtained with α = 300 and different θ, from left to right
45, 90, 135, 180.

Total Weighted Power

Note that the definition of the AWFT coefficients depending on the basis
functions {φαθ

k }k≥1, they suffer not only the changes of sign of the eigen-
functions but also the flips in the order due to the instability of the eigen-
functions of the ALBO (or LBO). Rabiei et al. [124] used the total weighted
power (TWP) as an aggregate of all frequency information weighted by
the normalized corresponding eigenvalue,

(STWP f )ξαθ =
∑
k≥0

λ2
αθ,k

‖Λαθ‖2
2

(S f )2
ξαθk , (5.25)

where ‖Λ‖2
2 = ∑

k≥0λ
2
αθ,k is the norm of the set of eigenvalues. Such an

aggregation allows removing the potential ambiguities due to different
signs and ordering of the eigenfunctions. Attributing greater value to
high frequencies the TWP can be seen as a filter that emphasizes local-
ized (high-frequency) properties.

5.3.5 Discretization

In the discrete setting, the surface M is represented by a triangular
mesh, and functions, inner products, LBO as introduced in Chapter 2.
A = diag(a1, . . . , aN ) is the mass matrix, and ai denotes the local area ele-
ment at vertex i . To each triangle i j k of the mesh, we attach an orthonor-
mal reference frame Ui j k = [vM ,vm, n̂] ∈ R3×3, where n̂ is the unit normal
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vector to the triangle and vm and vM are the directions of principal curva-
ture, computed using the method of [34]. The tensor Dα for the triangle
i j k operating on tangent vectors is expressed w.r.t. Ui j k as:

Dα =


1

1+α
1

1

 .

In the case θ = 0, let ei j ∈ R3 denote the oriented edge pointing from
vertex i to vertex j , normalized to unit length, and consider the triangle
i j k. We define the H-weighted inner product between edges ek j and eki

as 〈
ek j ,eki

〉
H = eT

k j Ui j kDαUT
i j k︸ ︷︷ ︸

H

eki , (5.26)

where the shear matrix H encodes the anisotropic scaling up to an or-
thogonal basis change. Note that in the isotropic case (α = 0) we have
H = I, such that the H-weighted inner product simplifies to the standard
inner product 〈ek j ,eki 〉H = cosαi j .

The discretization of the anisotropic Laplacian takes the form of an
n ×n sparse matrix ∆αθ =−A−1W. The stiffness matrix W is composed of
weights

wi j =


−1

2

( 〈ek j ,eki 〉H

sinαi j
+ 〈eh j ,ehi 〉H

sinβi j

)
(i , j ) ∈ E

−∑
k 6=i wi k i = j

0 else

(5.27)

where the notation is according to Figure 5.10. In the isotropic case,
〈ek j ,eki 〉H

sinαi j
= cosαi j

sinαi j
= cotαi j , thus reducing equation (5.27) to the classical

cotangent formula [120] as we saw in Chapter 2. To obtain the general
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case θ 6= 0, it is sufficient to rotate the basis vectors Ui j k on each trian-
gle around the respective normal n by the angle θ, equal for all trian-
gles (see Figure 5.10, red). Denoting by Rθ the corresponding 3×3 rota-
tion matrix, this is equivalent to modifying the H-weighted inner prod-
uct with the directed shear matrix Hθ = RθHRT

θ
. The resulting weights

wi j in equation (5.27) are thus obtained by using the inner products
〈ek j ,eki 〉Hθ

= eT
k j Hθeki . The computation of the Laplacian eigenvectors

is posed as a generalized eigenproblem

WΦ= AΦΛ ,

where Φ= (φ1, . . . ,φK ) is an N ×K matrix containing the first K eigenvec-
tors, and Λ = diag(λ1, . . . ,λK ) is a diagonal matrix containing the corre-
sponding eigenvalues. For the anisotropic Laplacian, we compute a set
of K eigenvectors Φαθ and eigenvalues Λαθ for each θ and α. The AWFT
is computed as

(Sf)αθ = (f�Φαθ)>AΦαθ(ĝαθ�Φ>
αθ),

where the result is an N ×K -dimensional matrix for θ and α; f is the in-
put function represented as an N -dimensional vector. (a�B)i j = ai bi j

denotes a K ×N matrix obtained by element-wise multiplication of a K -
dimensional column vector replicated N times along the second dimen-
sion with a K ×N matrix as in the previous Section.

5.3.6 Applications and results

Finally we show the application of AWFT to three standard problems in
geometry processing: shape segmentation, salient point detection and de-
sign of local feature descriptors for point to point matching. In each appli-
cation, one has the freedom to define the four main ingredients of AWFT.
First, the function f to be analyzed, which represents the information
we wish to encode. Second, the size of the window, determined by the
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parameter τ. We typically use a set of different values τ1, . . . ,τt to per-
form a multi-scale analysis. Third, the window orientations θ1 = 0,θ2 =
π
h , . . . ,θh = (h−1)π

h . Fourth, the anisotropy parameter α. We typically use a
set of different values α1, . . . ,αc to capture oriented structures of different
width.

Computation

We used up to K = 200 Laplacian eigenvectors and eigenvalues com-
puted using MATLAB eigs function. The computation of AWFT with the
settings used in our experiments takes on average less than 5 seconds on
a mesh with around 7000 vertices on a machine with 32GB of RAM and
an Intel 3,6 GHz Core i7 cpu.

Shape Segmentation

Applying the AWFT to the constant function f (x) = 1 gives rise to a
reweighted version of the GPS descriptor [14,133] that is direction-aware.
We apply on the squared AWFT features (S f )2

ξαθi the segmentation method
of Rodolà et al. [132] (which takes the classical GPS as input) using the
settings proposed by the authors.

Settings. We use f = 1, single window with τ = 0.002, two levels of
anisotropy α1 = 100,α2 = 300, F = f the constant function, and orien-
tations θ1 = 0,θ2 = π

4 , . . . ,θ4 = 3π
4 . We use only the first K = 50 frequencies.

Data and Evaluation. We evaluate the segmentation results according to
the Princeton Segmentation Benchmark [31], consisting of 380 meshes
from 19 object classes (20 shapes per class). A common meaningful seg-
mentation is given as ground truth for each category. The ground truth
assigns the same label to semantically similar segments ( the two arms of
a man).
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HKS WKS GPS WFT AWFT

Fig. 5.12: First row: segmentation of the hand shape obtained using (left to right) HKS,
WKS, GPS, WFT and AWFT. Second row: a few segmentation examples obtained with
AWFT.

We use two different evaluation criteria, Fidelity and Goodness. For ev-
ery segment in the ground-truth, Fidelity is the average ratio between the
number of the maximum subset of points that is segmented together by
the method and the number of points that compose that ground-truth
segment. Goodness is in some sense the inverse. For every segment ob-
tained by the method, it is defined as the average ratio between the max-
imum number of points that are segmented together in the ground truth
and the number of points that compose that segment provided by the
method.

Results Table 5.1 summarizes the segmentation results in terms of Good-
ness and Fidelity. For comparison, we show segmentation results ob-
tained with HKS, WKS, GPS and isotropic WFT features. Our AWFT pro-
duces the best score on average. Segmentation examples in Figure 5.12
show that AWFT is able to perform a segmentation that is both semanti-
cally meaningful and geometrically consistent.

Salient Point Detection

We use the AWFT to construct a saliency map that allows to detect key
points on surfaces. We use the logarithm of the mean curvature as an
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HKS WKS GPS WFT AWFT

airplane 0.41 / 0.82 0.38 / 0.84 0.47 / 0.80 0.42 / 0.85 0.48 / 0.91

ant 0.57 / 0.97 0.61 / 0.90 0.64 / 0.84 0.63 / 0.90 0.62 / 0.90

bird 0.44 / 0.84 0.45 / 0.89 0.52 / 0.86 0.44 / 0.86 0.52 / 0.89

fish 0.62 / 0.95 0.43 / 0.92 0.43 / 0.86 0.37 / 0.86 0.39 / 0.91

hand 0.52 / 0.91 0.55 / 0.92 0.61 / 0.88 0.61 / 0.88 0.75 / 0.94

octopus 0.35 / 0.98 0.35 / 0.95 0.44 / 0.87 0.32 / 0.90 0.40 / 0.95

plier 0.35 / 0.90 0.36 / 0.92 0.43 / 0.83 0.39 / 0.88 0.51 / 0.91

teddy 0.48 / 0.90 0.51 / 0.88 0.63 / 0.75 0.53 / 0.83 0.68 / 0.93

mean 0.47 / 0.91 0.46 / 0.90 0.52 / 0.84 0.46 / 0.87 0.54 / 0.92

Table 5.1: Performance in Fidelity / Goodness on 8 categories of the Princeton Segmen-
tation Benchmark. Best performance is highlighted in bold.

Fig. 5.13: Saliency maps computed with AWFT on some shapes from the evaluation
benchmark. The areas considered as more salient are in red while the less important
ones tend to blue. The final selected points are highlighted by small pink spheres.
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Fig. 5.14: The False Negative, False Positive and Weighted Miss error curves for the pro-
posed methods (in warm colors) and the methods presented in the used benchmark (in
cold colors).
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input function (capturing large curvature variations) and compute the
TWP of the AWFT. This way, we obtain a set of saliency maps for each
value of α, θ and τ. For every such saliency map, we compute local max-
ima as follows: For each point ξ we take the corresponding window Tξgαθ

(computed using the same τ used for the map) and locate its maximum.
We then perform a non-maximum suppression. Each map is then nor-
malized as proposed in [69]. A single saliency map is obtained by sum-
ming up the maps for different α, θ and τ. Finally, the maximum detec-
tion and non-maximum suppression is performed again, producing the
salient points.

Settings. We use f = log(H), various window sizes τ = 0.0002,0.0007,
0.001,0.0015,0.0055, a single level of anisotropy α= 300, and angles θ1 =
0,θ2 = π

12 , . . . ,θ12 = 11π
12 .

Data and Evaluation. We follow the test proposed in [43] on two differ-
ent datasets. Dataset A consists of 24 objects hand-marked by 23 human
subjects. Dataset B contains 43 models marked by at least 16 subjects.
The human annotations are used as the ground-truth for both datasets.
The adopted evaluation criterion (WME) is based on importance of the
selected points, where importance is based on these hand-marked selec-
tions.

Results. Figure 5.13 shows a few saliency maps and the corresponding
selected salient points. Note how the saliency maps identify semanti-
cally coherent parts among the animal and cup shape classes. Figure 5.14
evaluates the performance of various feature detection methods. We use
two non-maximum suppression settings (denoted AWFT1 and AWFT2)
to tradeoff between false positives and negatives. Table 5.2 shows the av-
erage area-under-the-curve (AUC) for different methods.
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Mean Mesh
saliency

Salient
points

3D-Harris 3D-SIFT SD-
corners

WFT AWFT AWFT2

0.59 0.57 0.59 0.57 0.63 0.59 0.59 0.59 0.59

Table 5.2: The mean AUC computed on the False Negative and the False Positive error
curves for all the comparable methods tested in these curves (the proposed ones and
all the others presented in the benchmark, not HKS that is not compatible with other
methods).
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Fig. 5.15: Comparison between WFT (left) and AWFT (right) descriptor computed at
three symmetric points of the cat shape (points and corresponding curves are color-
coded). Solid and dotted curves represent descriptors of points from the left and right
side of the cat, respectively.
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Fig. 5.16: Performance evaluation on FAUST dataset.

Descriptors for Point to Point Matching

In order to obtain a concise and informative descriptor for every point
on the surface, we use the TWP to reduce the dimension of the output of
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Fig. 5.17: Performance evaluation on CAESAR dataset.

AWFT on some geometrically meaningful functions. One of the key defi-
cencies of standard descriptors such as HKS, WKS or WFT is their invari-
ance to intrinsic symmetries. This is visualized in Figure 5.15, where we
show a bilaterally intrinsically symmetric shape (cat). The WFT at sym-
metric points (leftmost plot in solid and dotted) are nearly identical. On
the other hand, orientation is not preserved by the intrinsic symmetry (in
fact, if σ : M → M is a bilateral symmetry, then (S f )ξαθi = (S f )σ(ξ)α,−θ,i ).
As a result, the AWFT descriptor can distinguish intrinsically symmetric
points, as we experimentally show in the following.

Settings. We used five input features: f1, f2 are the third and fourth ge-
ometry vectors [90] encoding some of the spectral geometry of the shape;
f3 = 1; f4 = φ1 is the (isotropic) Fiedler vector providing a consistent or-
dering on the mesh vertices [87]; and f5 is the ShapeIndex [78] encoding
the curvatures of the surface. We used τ= 0.002,0.05, α1 = 100,α2 = 300,
and θ1 = 0,θ2 = π

4 , . . . ,θ4 = 3π
4 .

Data and Evaluation. We used two public-domain datasets of scanned
human shapes in different poses: FAUST [13] and CAESAR [126]. We se-
lect a random set of 60 shapes from the fitted-meshes subset of CAESAR,
where each shape has ∼6K vertices. Ground truth point-wise correspon-
dence is available in both datasets.
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We evaluate descriptor performance using cumulative match charac-
teristic (CMC), receiver operator characteristic (ROC) and correspondence
quality characteristic (CQC), already used and defined in the previous ex-
periments on LSCNN.

Results. The evaluation results are summarized in Figures 5.16–5.17,
which clearly demonstrate that AWFT outperforms the classical meth-
ods. In Figure 5.16, we also compare to the descriptor proposed in the
previous version (and in [14]) without the learning step (referred to as
BMM). We use the first 20 coefficients of the WFT computed on 5 ge-
ometry vectors as in [14], with the same two τ used in AWFT. Despite
the double dimensionality BMM does not offer comparable performance
without the class-specific learning step. In Figure 5.18, we show the dis-
tance between the descriptor at a point (indicated with the white sphere
on the first shape on the left) and the rest of the points on the same shape
as well as other shapes. AWFT descriptors are the most localized and
discriminative, and correctly disambiguate symmetries. We additionally
tested our descriptor on the TOSCA dataset, comprising 7 different shape
classes with near-isometric deformations within each class. As we show
in Figure 5.19, AWFT clearly outperforms the classical methods also on
non-human shapes (e.g., cats). These results show that the proposed de-
scriptor is not class-specific and achieves the best performances on dif-
ferent shapes. In a second experiment, we apply the WFT and AWFT on
16-dimensional HKS and WKS descriptors. This was done to show how
already good descriptors can be enriched by the proposed tools. The re-
sults are shown in Figures 5.20, 5.21, 5.22.

5.3.7 Conclusion and future work

In this Section, we proposed an anisotropic windowed Fourier transform
on manifolds. The proposed tool enables to perform local directional fre-
quency analysis and improve the study of geometry in several applica-
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tions in shape analysis. Its power and versatility were tested on classical
datasets for different tasks as shape segmentation, salient points detec-
tion and point to point matching. In future work, we will study additional
applications of AWFT, as well as its computation on other types of data
such as point clouds.

WFT and AWFT methods proposed in the previous two Sections al-
low us to move from a global spectral analysis to a local spectral analysis
on surfaces. From the theoretical point of view the proposed tools solve
the uncertainty principle generated by the global support of the Fourier
basis functions. The lack of localization in the standard Fourier basis is
solved in these methods using a window to localize the signal before the
analysis. What we obtain is a localized signal that could be analyzed in
its spectral representation. These approaches reach good localizations
simultaneously in the space domain and in the frequency domain, and
they are promising in different applications.
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HKS

WKS

WFT

AWFT

Fig. 5.18: Normalized Euclidean distance between the descriptor at a reference point
on the leg (white sphere) and the descriptors computed at the rest of the points for dif-
ferent transformations (from left to right: near isometric deformations, non-isometric
deformations, subsampling, smoothing and remeshing). Cold and hot colors represent
small and large distances, respectively. For visualization clarity, distances are saturated
at 30% of the maximum.
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Fig. 5.19: Performance evaluation on the CAT class from TOSCA dataset (11 meshes).
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Fig. 5.20: Performance evaluation on FAUST dataset (100 meshes).
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Fig. 5.21: Performance evaluation on CAESAR dataset (60 meshes).
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Fig. 5.22: Performance evaluation on the CAT class from TOSCA dataset (11 meshes).



5.4 LMH: a localized bases for spectral geometry

processing

In the previous Sections of this Chapter we introduce two different ver-
sions of the WFT defined on manifolds. With these methods we face one of
the main drawback of the LBO eigenfunctions (or MH) and the Fourier
analysis built on this basis that is the lack of spatial localization. De-
spite the LBO itself is a local (differential) operator, its eigenfunctions and
eigenvalues carry geometric and topological information about the entire
shape. As a practical consequence, operations that should be local by de-
sign are often interested by non-local effects due to the global awareness of
these quantities. In other words a limiting aspect of classical spectral anal-
ysis on manifolds lies in its inherently “global” nature. To face this problem
in WFT and AWFT we localized the signal analyzed by conveying the sig-
nal with a window. In both these cases we focus the localization problem
on the signals.
An alternative approach could be to consider a basis with different local
properties with respect to the MH. In this spirit we propose the Localized
Manifold Harmonics namely LMH, a new localized basis. With LMH we
introduce a new framework for local spectral shape analysis, which can
solve the lack of spatial localization. In the Following Section we show
how to efficiently construct a localized orthogonal bases by solving an op-
timization problem that can be posed as the eigendecomposition of a new
operator obtained by a modification of the standard Laplacian. We study
the theoretical and computational aspects of the proposed framework and
showcase our new construction on the classical problems of shape approx-
imation and correspondence. We obtain significant improvement com-
pared to classical Laplacian eigenbases as well as other alternatives for
constructing localized bases. For more details on the LMH, please refer
to [101].
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Fig. 5.23: A few Localized Manifold Harmonics (LMH) on two different regions of the
dog shape. By changing the region location on the surface, our model provides an
ordered set of localized harmonic functions (i.e., defined on the entire surface, but
strongly concentrated on the selected region). In this figure the localized harmonics
are clearly visible across different frequencies. The LMH constitute a valid alternative
to the classical manifold harmonics and can be used in conjunction with those, or as a
drop-in replacement in typical spectral shape analysis tasks.

5.4.1 Limits of the standard basis

As we already seen spectral methods are ubiquitously used in 3D shape
analysis and geometry processing communities for a wide range of ap-
plications. The centerpiece of such methods is the construction of an or-
thogonal basis for the space of functions defined on a manifold, allowing
to generalize classical Fourier analysis to non-Euclidean domains. Typi-
cally, such bases are constructed by the diagonalization of the Laplace-
Beltrami operator [86]. The choice of Laplacian eigenbasis is convenient
for several reasons. First, it is intrinsic and thus invariant to manifold
parametrization and its isometric deformations [87]. Second, it allows to
be agnostic to a specific shape representation, as the Laplace-Beltrami
operator can be discretized on meshes, point clouds, volumes, etc. Third,
Laplacian eigenbasis turns to be optimal for approximating functions
with bounded variation [1] and in many applications only the first few
eigenfunctions are sufficient to achieve a good approximation. Finally,
in the discrete setting, the computation of the Laplacian eigenbasis has
relatively low complexity due to the sparse structure of the Laplacian ma-
trix.
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One of the key disadvantages of the Laplacian eigenbases is their
global support. Thus, representing local structures requires using (po-
tentially, infinitely) many basis functions. In many applications, one wi-
shes to have a local basis that allows to limit the analysis to specific
parts of the shape. The recently proposed compressed manifold harmon-
ics [20, 81, 110, 118] attempt to construct local orthogonal bases that ap-
proximately diagonalize the Laplace-Beltrami operator. The main disad-
vantage of this framework is the inability to explicitly control the local-
ization of the basis functions. Moreover, the basis is computed by solving
an optimization problem on the Stiefel manifold of orthogonal matrices
which does not guarantee a global solution. We proposed a new type of
intrinsic operators whose spectral decomposition provides a local basis
the Localized Manifold Harmonics (LMH). Similarly to related construc-
tions like [33], the new basis is smooth, local, and orthogonal; it is local-
ized at specified regions of the shape, explicitly controllable; and it is effi-
ciently computed by solving a standard eigendecomposition, thus com-
ing with global optimality guarantees. The key novelty of our approach
comes from its capability to integrate the global information obtained by
the Laplacian eigenfunctions with local details given by our new basis. To
this end, the localized basis is constructed in an incremental way, such
that the new functions are orthogonal to some given set of functions (e.g.,
standard Laplacian eigenfunctions). Due to the aforementioned proper-
ties, we name our new basis Localized Manifold Harmonics (LMH). At the
end the set of basis functions that we obtain has the following properties:

− smooth, local, and orthogonal.
− localized at specified regions of the shape, explicitly controllable;
− efficiently computed by solving a standard eigendecomposition, thus

coming with global optimality guarantees.

The global structure of the Laplacian eigenbasis has adverse effects
in numerous applications. In spectral shape deformation, it is hard to
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concentrate the analysis on local parts of the shape. In shape correspon-
dence, the dependence on the Laplacian eigenfunctions on the global
structure of the shape makes it hard to cope with topological noise and
missing parts. In the methods proposed in the previous Sections local
analysis is introduced on non-Euclidean manifolds using the Windowed
Fourier Transform (WFT) that has been proposed for graphs [138] and
by our works on shapes [14, 104]. Although these methods improved the
encoding of local parts, we still adopted Laplacian eigenfunctions as a
basis to compute the spectral components, and therefore it was still hard
to perform well in the challenging scenarios mentioned above.

As a possible remedy, Ozolin, š et al. [118] introduced compressed modes,
a construction of local orthogonal bases that approximately diagonalize
the Laplacian. The key idea of this method is the addition of a sparsity-
promoting L1-norm to the Dirichlet energy (the combined effect of s-
moothness and sparsity results in localization of the basis functions).
Rustamov [134] previously used a similar regularization to construct lo-
cal biharmonic kernels for function interpolation. Neumann et al. [110]
applied the approach of [118] to problems in computer graphics. Kov-
natsky et al. [81] showed an efficient way of computing compressed man-
ifold modes, while Bronstein et al. [20] proposed a more theoretically
sound approach for the computation of L1-norm on manifolds.

Closely related to our method is the recent approach of Choukroun et
al. [33], who considered the spectral decomposition of an elliptic oper-
ator realized as a diagonal update to the standard Laplacian. Differently
from [33], our solutions are simultaneously localized and orthogonal to
the globally-supported Laplacian eigenbasis, leading to important prac-
tical consequences in several applications.

The key idea of the LMH is the construction of localized bases by spec-
tral decomposition of a modified Laplacian operator, crafted especially
to provide eigenfunctions with local support. Our new operator inherits
the important properties of the original Laplacian such as isometry in-
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variance. In particular, it has a clear Fourier-like meaning that makes its
use well interpretable. Differently from [20, 81, 110, 134] which impose
locality through an L1 constraint, we allow an explicit indication of the
local support of each function. This improves the versatility in control-
ling the local analysis, especially for semantically-guided interventions.
Another important difference from other methods is that our new basis is
computed by solving a standard eigendecomposition problem avoiding
the need for more complex optimization methods.

5.4.2 Localized manifold harmonics

With LMH we introduce a new framework for spectral shape analysis that
is designed to be at the same time local and compatible with the existing
spectral constructions. In practice, our approach boils down to the com-
putation of the eigenfunctions of a new operator, which is realized as a
simple update to the classical manifold Laplacian – thus fully retaining
the computational efficiency and theoretical guarantees of the resulting
optimization process.
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Fig. 5.24: Classical (top row) and localized (bottom row) harmonics in 1D under Neu-
mann boundary conditions. Note that the localized harmonics are orthogonal to those
in the first row. The selected region R ⊂ [0,1] is marked as a black segment.
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Definition

Let us be given a manifold M , a region R ⊆M thereof, a set of orthonor-
mal functions φ1, . . . ,φk ′ (e.g. the first k ′ Laplacian eigenfunctions), and
an integer k. We seek a new set ψ1, . . . ,ψk of functions that are smooth,
orthonormal, and localized on R, as the solution to the following opti-
mization problem:

min
ψ1,...,ψk

k∑
j=1

ES(ψ j )+µRER(ψ j ) (5.28)

s.t. 〈ψi ,ψ j 〉L2(M ) = δi j i , j = 1, . . . ,k (5.29)

〈ψi ,φ j 〉L2(M ) = 0 i = 1, . . . ,k; j = 1. . . ,k ′ (5.30)

where the constraints (5.30) demand the basis functions to be orthog-
onal to the subspace span{φ1, . . . ,φk ′}. As we will see in what follows, it
allows constructing an incremental set of functions that are orthogonal
to a given set of standard Laplacian eigenfunctions.

The first term ES is the Dirichlet functional (2.13) promoting the smooth-
ness of the new basis. The term

ER( f ) :=
∫

M
( f (x)(1−u(x)))2 dx , (5.31)

is a quadratic penalty promoting the localization of the basis functions
on the given region R ⊆ M . Here u : M → [0,1] is a membership func-
tion such that u(x) = 1 for x ∈ R and u(x) = 0 otherwise. Note that we
let function u assume a continuum of values in [0,1], implementing the
notion of “soft” membership (the choice between binary and soft u is
application-dependent).

We refer to the solutions of problem (5.28) as localized manifold har-
monics (LMH). Figure 5.24 provides an illustration of LMH in the [0,1]
interval, while Figures 5.23 and 5.25 depict a few examples of such bases
on 2D manifolds.
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Fig. 5.25: Localized manifold harmonics for the red region shown on the left. We show
the first k ′ = 5 standard Laplacian eigenfunctions (top row), the first k = 5 LMH with
the orthogonality term disabled (µ⊥ = 0, middle row), and the first k = 5 LMH obtained
by optimizing the full energy (5.33) (bottom row). Note that the latter harmonics are or-
thogonal to the first k ′ Laplacian eigenfunctions. We also show the generalized eigen-
values associated with each of the three cases.

Relaxed problem

For practical reasons, in what follows we will consider a relaxed variant of
(5.28), in which we replace the hard constraints (5.30) by a large penalty:

min
ψ1,...,ψk

k∑
j=1

E (ψ j ) s.t. 〈ψi ,ψ j 〉L2(M ) = δi j , (5.32)



121

where

E (ψ j ) = ES(ψ j )+µRER(ψ j )+µ⊥E⊥(ψ j ) , (5.33)

E⊥( f ) :=
k ′∑

i=1

|〈φi , f 〉L2(M )|2 . (5.34)

Note that problems (5.32) and (5.28) are equivalent as µ⊥ →∞. An em-
pirical evaluation of the equivalence of the two formulations will be pro-
vided in Section 5.4.4.

Discretization

Here we refer to Chapter 2 for the overview of the discrete representation
of manifold M . We just remember that if N is the number ov vertices of
the mesh representing M than the discretization of the LBO ∆M takes
the form of an N ×N sparse matrix L =−A−1W, where the mass matrix A
is a diagonal matrix of area elements and the stiffness matrix W contains
the cotangent weights.
We now turn to the discretization of problem (5.32). Let Ψ ∈ Rn×k be a
matrix containing our discretized basis functionsψ1, . . . ,ψk as its columns,
and same way, let Φ ∈ Rn×k ′

be a matrix of the first k ′ Laplacian eigen-
functions φ1, . . . ,φk ′. The total energy is discretized as

∑k
j=1 E (ψ j ) = E (Ψ),

comprising purely quadratic terms

ES(Ψ) = tr(Ψ>WΨ) (5.35)

ER(Ψ) = tr(Ψ>Adiag(v)Ψ) (5.36)

E⊥(Ψ) = tr(Ψ>AΦΦ>A︸ ︷︷ ︸
Pk′

Ψ) (5.37)

where v denotes the discrete version of v(x) ≡ (1−u(x))2. In other words,
the locality penalty (5.31) is implemented as a diagonal update to the
standard Laplacian; while the term promoting orthogonality to Φ (5.34)
is realized as a rank-k ′ projector Pk ′.
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Due to the linearity of the trace, the discrete version of problem (5.32)
can be expressed as

min
Ψ∈Rn×k

tr(Ψ>Qv,k ′Ψ) s.t. Ψ>AΨ= I , (5.38)

where the matrix

Qv,k ′ = W+µR Adiag(v)+µ⊥APk ′ (5.39)

is symmetric and positive semi-definite (we make the dependency on
v,k ′ explicit as a subscript). Problem (5.38) is equivalent to the general-
ized eigenvalue problem

Qv,k ′Ψ= AΨΛ, (5.40)

(see Theorem 1.2 of [135]). We stress that the new operator Qv,k ′ is intrin-
sic, and so are its eigenfunctions.

As shown later in Subsection 5.4.4, a global optimum of this problem
can be found by classical Arnoldi-like methods. Note that global solu-
tions to the original constrained problem (5.28) can also be easily com-
puted, however throughout this paper we favor the relaxed formulation
for computational efficiency reasons. We refer to Subsection 5.4.4 for
comparisons.

5.4.3 Properties of LMH

Here we discuss the main theoretical properties and computational as-
pects of our framework.

Basis functions

As mentioned before, our localized basis functions are orthonormal eige-
nfunctions of a matrix (5.40) obtained by modification of the Laplacian.
Indeed, by setting µR = µ⊥ = 0, the solution of (5.38) is attained by the
first k standard Laplacian eigenfunctions. Similarly, by setting µR = 0 (no
locality) and for µ⊥ →∞, problem (5.38) can be equivalently rewritten as
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MH

LMH

Pose Subject Topology Partiality Gaussian

Fig. 5.26: Laplacian eigenfunctionφ12 (top) and localized manifold harmonicψ12 (bot-
tom) under different shape transformations. From left to right: near-isometry (different
pose), non-isometric deformation (different subject), topological noise (glued hands),
missing part, and geometric noise. LMH is more stable under such deformations com-
pared to the standard MH.

min
Ψ∈Rn×k

tr(Ψ>WΨ) s.t. (ΨΦ)>A(ΨΦ) = I , (5.41)

whose minimizers are the standard Laplacian eigenfunctionsψ1 =φk ′+1,
. . . ,ψk =φk ′+k .

For µR > 0 and µ⊥ > 0, we obtain a new set of k functions ψ1, . . . ,ψk

localized to a given region R ⊆M . These functions effectively extend the
Laplacian eigenbasis, in the sense that the new set φ1, . . . ,φk ′,ψ1, . . . ,ψk

forms an orthonormal basis for a k +k ′-dimensional subspace of L2(M ).
Importantly, the new basis is still isometry-invariant, and is designed to
effectively represent functions with support restricted to the given region
(see Figure 5.26). Compared to only using the ‘global’ Laplacian eigenba-
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sis, the new representation provides a more parsimonious model: fewer
localized harmonics are needed to capture the high-frequency content
within R, than the number of harmonics that would be needed in the
global basis. The localized nature of this construction allows to mitigate
considerably the non-local effects associated with the adoption of the
global basis (influence of topological noise, etc).

Finally, disabling the orthogonal penalty (µR > 0, µ⊥ = 0) would lead to
the set of (now possibly linearly dependent) k +k ′ functions spanning a
k ′′ ≤ k +k ′-dimensional subspace of L2(M ). This may result in a redun-
dant representation of functions supported on R ⊆ M , e.g., whenever a
standard Laplacian eigenfunction has also support in R. We refer to the
experimental results for a deeper analysis of the effect of orthogonality
on the representation quality.

Spectrum

By the interpretation of (5.38) as a generalized eigenvalue problem (5.40),
we obtain a natural notion of spectrum associated with the LMH, namely
given byλ j (Q) =ψ>

j Qψ j , j = 1, . . . ,k. Indeed, since at the optimum ER(ψ j )

≈ E⊥(ψ j ) ≈ 0 for all j , we have ψ>
j Qψ j ≈ ψ>

j Wψ j , i.e., the Dirichlet en-
ergy of ψ j as in the classical setting (2.13). This provides us with a nat-
ural ordering of the basis functions; it remains to see in what measure
do the localized harmonics bring additional (higher frequency) informa-
tion to the global basis formed by the first k ′ Laplacian eigenfunctions
φ1, . . . ,φk ′. A first answer is provided by the following

Theorem 5.1. (spectral gap). Let (φi ,λi (W))n
i=1 be the eigenpairs of the

standard Laplacian, and let Qv,k ′ be defined as in (5.39). Then, for large
enough µ⊥, any non-negative v and any choice of k ′ ≤ n − 1, we have
λk ′(W) ≤ λ1(Qv,k ′), with equality holding iff φk ′+1(x) = 0 whenever v(x) 6=
0.

Proof. Let W, µ⊥APk ′ and µR Adiag(v) be real symmetric positive semidef-
inite matrices of dimension n ×n, and define
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Fig. 5.27: Left: LMH spectra grow linearly with rate inversely proportional to the area
of the region, and are bounded from above by the standard Laplacian eigenvalues of
submanifold R ⊆ M . Top-right: Enlargement of the left plot around the index k ′ = 20.
We illustrate the spectral gap (dotted) between λk ′(W) and λ1(Qv,k ′); note that the gap
is different among the two regions.

Qv,k ′ = W+µ⊥APk ′ +µR Adiag(v).

Let 0 = λ1(W) ≤ . . . ≤ λn(W) be the eigenvalues for the generalized eigen-
value problem of W and λ1(W + µ⊥APk ′) ≤ . . . ≤ λn(W + µ⊥APk ′) and
λ1(Qv,k ′) ≤ . . . ≤ λn(Qv,k ′) be the generalized eigenvalues of W+µ⊥APk ′

and Qv,k ′ respectively. We aim to prove that

λk ′(W) ≤λ1(Qv,k ′) , (5.42)

for some µ⊥,µR ∈R and for every k ′ ∈ {0, . . . ,n −1}.
We start by observing that

λk ′(W) ≤λk ′+1(W) =λ1(W+µ⊥APk ′) , (5.43)



126

where the first inequality is given by the non-decreasing ordering of the
eigenvalues, and the equality on the right follows from the fact that for
some choice of µ⊥ > λk ′+1(W), φk ′+1 is the minimizer of x>(W+µ⊥APk ′)x
under the orthogonality conditions 〈x,x〉L2(M ) = 1 and 〈φl ,x〉L2(M ) = 0,
∀l ∈ {

1, . . . ,k ′}, i.e., (µ⊥APk ′)x = 0.
Invoking a special case of Corollary 4.3.4b in [62] and using the fact

thatµR Adiag(v) only has non-negative eigenvalues (being a diagonal ma-
trix with non-negative entries), we obtain the following inequality:

λ1(W+µ⊥APk ′) ≤λ1(W+µ⊥APk ′)+µR Adiag(v)) =λ1(Qv,k ′) . (5.44)

Furthermore, this inequality is an equality if and only if ∃x ∈ Rn s.t. x 6= 0
and the following three conditions are satisfied:

1. (W+µ⊥APk ′)x =λ1(W+µ⊥APk ′)x;
2. (Qv,k ′)x =λ1(Qv,k ′)x;
3. (µR Adiag(v))x = 0.

Putting together (5.43) and (5.44) we can conclude that:

λk ′(W) ≤λk ′+1(W) ≤λ1(W+µ⊥APk ′) ≤λ1(Qv,k ′) . (5.45)

Note that the existence of a gap is given either by the violation of any
of the three conditions above, or in the presence of simple spectra, i.e.,
whenever λk ′(W) 6=λk ′+1(W).

Choice of µ⊥.

We aim to prove that for every µ⊥ > γ for some γ ∈R+ we have:

λ1(W+µ⊥APk ′) ≥λk ′+1(W) . (5.46)

We can rewrite the two terms of this inequality as:

λ1(W+µ⊥APk ′) = min
〈x,x〉L2(M )=1

x>(W+µ⊥APk ′)x (5.47)

λk ′+1(W) = min
〈x,x〉L2(M )=1

〈φi ,x〉L2(M )
=0, ∀i=1,...,k′

x>Wx . (5.48)
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The objective in (5.47) can be rewritten as:

x>(W+µ⊥APk ′)x = x>Wx+x>(µ⊥APk ′)x . (5.49)

We now express our vectors as the Fourier series x = ∑n
i=1αiφi , where

αi = 〈φi ,x〉L2(M ). Noting that 〈x,x〉L2(M ) = 1 implies
∑n

i=1α
2
i = 1, we can

write:

x>Wx = (
n∑

i=1

αiφi )>W(
n∑

i=1

αiφi )

= (
n∑

i=1

αiφi )>(
n∑

i=1

λi (W)αi Aφi ) =
n∑

i=1

λi (W)α2
i .

(5.50)

Similarly, we can rewrite the second summand in (5.49) as:

x>(µ⊥APk ′)x = (
n∑

i=1

αiφi )>(µ⊥APk ′)(
n∑

i=1

αiφi ) (5.51)

=µ⊥(
n∑

i=1

αiφi )>(AΦΦ>A)(
n∑

i=1

αiφi ) (5.52)

=µ⊥
(
(

n∑
i=1

αiφi )>AΦ
)(
Φ>A(

n∑
i=1

αiφi )
)

(5.53)

=µ⊥ [α1, . . . ,αk ′] [α1, . . . ,αk ′]> (5.54)

=µ⊥
k ′∑

i=1

α2
i . (5.55)

From (5.50) and (5.55) we can conclude:

x>(W+µ⊥APk ′)x = x>Wx+x>(µ⊥APk ′)x =
n∑

i=1

λi (W)α2
i +µ⊥

k ′∑
i=1

α2
i . (5.56)

At this point we split the proof in three different cases:

1. 〈φi ,x〉L2(M ) = 0, ∀i = 1, . . . ,k ′, that is equivalent to ask that Pk ′x = 0. In
this case we have:
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λ1(W+µ⊥APk ′) = min
〈x,x〉L2(M )=1

x>(W+µ⊥APk ′)x (5.57)

= min
〈x,x〉L2(M )=1

〈φi ,x〉L2(M )
=0, ∀i=1,...,k′

(x>(W+µ⊥APk ′)x) (5.58)

= min
〈x,x〉L2(M )=1

〈φi ,x〉L2(M )
=0, ∀i=1,...,k′

x>Wx =λk ′+1(W) . (5.59)

2. x ∈ span(φ1, . . . ,φk ′), implying that αi = 0 ∀i > k ′ and hence x =∑k ′
i=1αiφi . We get:

x>(W+µ⊥APk ′)x =
k ′∑

i=1

λi (W)α2
i +µ⊥

k ′∑
i=1

α2
i . (5.60)

Since we take the minimum over the x s.t. 〈x,x〉L2(M ) = 1 we have∑k ′
i=1α

2
i = 1 and:

x>(W+µ⊥APk ′)x =
k ′∑

i=1

λi (W)α2
i +µ⊥ ≥µ⊥ , (5.61)

where the equality is realized for x =φ1 since λ1(W) = 0, and all other
cases yield µ⊥ plus some non-negative quantity. We get to:

λ1(W+µ⊥APk ′) = min
〈x,x〉L2(M )=1

x>(W+µ⊥APk ′)x =µ⊥ . (5.62)

3. For the last case we have 〈φi ,x〉L2(M ) 6= 0 for at least one i = 1, . . . ,k ′

and for at least one i > k ′ at the same time.

x>(W+µ⊥APk ′)x =
n∑

i=1

λi (W)α2
i +µ⊥

k ′∑
i=1

α2
i (5.63)

=
k ′∑

i=1

λi (W)α2
i +

n∑
i=k ′+1

λi (W)α2
i +µ⊥

k ′∑
i=1

α2
i (5.64)

=
k ′∑

i=1

(λi (W)+µ⊥)α2
i +

n∑
i=k ′+1

λi (W)α2
i . (5.65)
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Since λi (W) ≥λk ′+1(W), ∀i ≥ k ′+1 we can write:

x>(W+µ⊥APk ′)x =
k ′∑

i=1

(λi (W)+µ⊥)α2
i +

n∑
i=k ′+1

λi (W)α2
i (5.66)

≥
k ′∑

i=1

(λi (W)+µ⊥)α2
i +λk ′+1(W)

n∑
i=k ′+1

α2
i (5.67)

≥
k ′∑

i=1

µ⊥α2
i +λk ′+1(W)

n∑
i=k ′+1

α2
i . (5.68)

If we take µ⊥ > λk ′+1(W) in order to satisfy the condition imposed by
case 2, we get:

x>(W+µ⊥APk ′)x ≥
k ′∑

i=1

µ⊥α2
i +λk ′+1(W)

n∑
i=k ′+1

α2
i (5.69)

>λk ′+1(W)
k ′∑

i=1

α2
i +λk ′+1(W)

n∑
i=k ′+1

α2
i (5.70)

=λk ′+1(W)
n∑

i=1

α2
i (5.71)

=λk ′+1(W) . (5.72)

We can therefore conclude that

λ1(W+µ⊥APk ′) = min
〈x,x〉L2(M )=1

x>(W+µ⊥APk ′)x >λk ′+1(W) if µ⊥ >λk ′+1(W) .

(5.73)

In Figure 5.28 we show an empirical evaluation across several choices of
µ⊥.

This theorem ensures the existence of a non-negative gap between the
two spectra, i.e., the new basis functions do not introduce any redun-
dancy, and the gap is the smallest possible by the global optimality of
(5.38). In other words, the localized basis “picks up” where the global ba-
sis “left off” (see Figure 5.27 for examples). Note that the last condition
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Fig. 5.28: Plot of λ1(W+µ⊥APk ′) at increasing µ⊥. Note how for every µ⊥ ≤ λk ′+1(W)
the frequency (y-axis) increases, converging at µ⊥ > λk ′+1(W). At convergence, the or-
thogonality constraint (encoded in the penalty term E⊥(ψ) in the LMH formulation) is
satisfied.

on v in Theorem 5.1 is almost never realized in practice: equality is ob-
tained only when the Laplacian eigenfunction φk ′+1 is localized to the
same region indicated by v .

Interestingly, for a special class of functions v the spectrum λ1(Qv,k ′) ≤
λ2(Qv,k ′) ≤ . . . follows a well-defined behaviour, as remarked below.
Observation: Let v be a binary indicator function supported on some
(possibly disconnected) region R ⊆M .
Then, λi (Qv,k ′)−λ1(Qv,k ′) ∝ i /

p
Area(R) as i →∞.

The observation above can be thought of as a generalization of Weyl’s
asymptotic law [29] to sub-regions of M (see Figure 5.27).

Comparison to standard Laplacian on parts

Perhaps the most direct way to achieve locality is to consider the given
region R ⊆ M as a separate manifold with boundary ∂R and Laplacian
∆R , and then compute the eigen-decomposition WRΨR = ARΨRΛR of ∆R

(note that WR ,AR can be obtained as submatrices of W,A followed by nor-
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µR = 350 50 25 15 5 0

φR
i ψ j1 ψ j2 ψ j3 ψ j4 ψ j5 φk

Fig. 5.29: Our model allows to smoothly transition from a localized solution equivalent
to a standard Laplacian eigenfunction φR

i on a partial shape with Neumann bound-
ary conditions (first column), to a globally supported solution equivalent to a standard
Laplacian eigenfunction φk on the full shape (last column). Each ψ is obtained by solv-
ing a different problem with a different µR and µ⊥ = 0. Note that the resulting “interpo-
lating” harmonics ψ j1,...,5 do not necessarily correspond to the same eigenvalue.

malization and by fixing the weights along ∂R). The eigenfunctions ψR
i

can then be extended to the entire M by means of zero-padding,

ψ̃R
i (x) =

ψR
i (x) x ∈ R

0 else

A first difference between this and our approach lies in the fact that
〈ψ̃R

i ,φ j 〉L2(M ) 6= δi j in general, i.e., the extended partial eigenfunctions
do not “complete” the global basis and there is no separation of spectra
(guaranteed in our case by Theorem 5.1), leading in turn to a redundant
representation.

Secondly, our approach is more general in that we allow “soft” regions
represented by allowing v to obtain values in the interval [0,1], which is
obviously not achievable by extracting sub-regions. This latter property
is especially important in applications where a sharp (binary) selection
would lead to undesirable boundary effects around the region of interest
(see Subsection 5.4.5 for examples).
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Finally, we stress that the standard Laplacian ∆R⊆M may have an ei-
genspace in common with our operator with µ⊥ = 0, a binary v on R, and
large enough µR . In turn, the full Laplacian ∆M is always obtained for
µR = 0. A remarkable manifestation of this fact is given by the “interpola-
tion effect” shown in Figure 5.29. Note that the observation above is not
true in general, since we do not impose any boundary conditions w.r.t.
R in our problem (indeed, we allow R to be soft), while all eigenfunc-
tions of ∆R always satisfy specific boundary conditions such as (2.10).
Despite the loose connection, this observation allows us to complement
the lower bound of Theorem 5.1 by the following

Theorem 5.2. (upper bound). Let WR be the stiffness matrix associated
with the submanifold R ⊆M and define v as the binary indicator function
of M \ R. Then, λi (Qv,k ′) ≤λi+k ′(WR) for any k ≤ n.

Proof. We want to show that ∀k ∈ {1,2, . . . ,n} we have the following upper
bound:

λi (Qv,k ′) ≤λi+k ′(WR) .

Similarly to Theorem 1, the proof follows directly from Corollary 4.3.4b
in [62], which specialized to our case reads:

λi (WR +µ⊥APk ′) ≤λi+π(WR) , (5.74)

where π is the number of positive eigenvalues of µ⊥APk ′. Since Qv,k ′ =
WR +µ⊥APk ′ and using the fact that µ⊥APk ′ is a positive semidefinite ma-
trix with rank k ′, we have π= k ′, leading to:

λi (Qv,k ′) =λi (WR +µ⊥APk ′) ≤λi+π(WR) =λi+k ′(WR) . (5.75)

See Figure 5.27 for an example.

Comparison to compressed manifold modes

Ozolin, š et al. [118] proposed computing compressed manifold modes
(CMM) as solutions to
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min
Ψ∈Rn×k

tr(Ψ>WΨ)+µ‖Ψ‖1 s.t. Ψ>AΨ= I . (5.76)

Problem (5.76) makes use of a sparsity-inducing L1 prior which, together
with the smoothness promoted by the Dirichlet term, leads to the result-
ing functions having compact support controlled by parameter µ. It is
important to note that this model does not allow to explicitly control the
modes location. As shown in [110], these functions tend to concentrate
around areas like shape protrusions and ridges. While different in its na-
ture, the CMM model (5.76) admits a computational procedure which
shares some similarities with ours. Assume that the solution of (5.76)
for a given µ is a set of k functions supported on regions R1, . . . ,Rk (ob-
tained a posteriori), represented by the soft indicators 1− v1, . . . ,1− vk ,
and let µ⊥ = 0. Then, the application of our framework using the matri-
ces Qvi ,0 corresponds to one iteration of the iterative reweighting scheme
proposed for the efficient computation of CMMs in [20].

Comparison to elliptic operator.

Concurrently with our work, Choukroun et al. [33] considered a family
of elliptic operators of the form H = W+V, where the potential V is a di-
agonal operator akin to our localization term (5.36). The same approach
was recently followed in [91] to obtain localized basis functions around
points of interest on the surface.

Differently from these approaches, we seek for localized basis func-
tions that simultaneously lie in a subspace orthogonal to span{φ1, . . . ,φk ′},
where φi are the first k ′ standard Laplacian eigenfunctions. In other
words, we seek to “augment” the global basis by introducing a local re-
finement, while the aforementioned works attempt to construct a com-
plete basis in agreement with the input potential. This is a crucial dif-
ference that has noticeable effects in practice, as we will demonstrate in
Subsection 5.4.5.
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5.4.4 Implementation

Optimization

As shown in Subsection 5.4.2, computing our localized basis functions
boils down to solving a generalized eigenvalue problem QΨ= AΨΛ, with
Q = W +µR Adiag(v)+µ⊥AΦΦ>A. We note that computing Q explicitly
involves the construction of a dense n×n matrix AΦΦ>A, which may be-
come prohibitive for large meshes. However, we avoid this computation
altogether by noticing that the µ⊥-term has very low rank k ′ ¿ n. This
condition allows the application of exact update formulas throughout
the optimization of problem (5.38). We show how to efficiently compute
a global solution to the generalized eigenvalue problem:

QΨ= AΨΛ , (5.77)

with Q = W+µR Adiag(v)+µ⊥(AΦ)(AΦ)>.
Since the operator Q is real and symmetric w.r.t. the positive semi-

definite mass matrix A, we employ the (globally optimal) implicitly re-
started Arnoldi method (IRAM) [85] (as implemented in the ARPACK
suite [84]) for computing its first k eigenpairs. The application of IRAM
involves iteratively solving linear systems of the form:

Qx(t ) = Ab(t ) (5.78)

for some given b(t ) ∈ Rn. Expressing Q in terms of the matrices Z = W+
µR Adiag(v) and B = AΦ ∈Rn×k ′

, we come to:

(Z+µ⊥BB>)x(t ) = Ab(t ) . (5.79)

Note that matrix BB> can be interpreted as a rank-k ′ update to Z (with
k ′ ¿ n), allowing us to apply the Sherman-Morrison-Woodbury identity
[152]:

(Z+µ⊥BB>)−1 = Z−1 −µ⊥Z−1B (I+µ⊥B>Z−1B)︸ ︷︷ ︸
Y

−1B>Z−1 .



135

It is important to notice that the rhs does not involve the computation
of BB>, and only involves efficient operations with a sparse n ×n matrix
Z and a dense k ′ × k ′ matrix Y. The application of this formula for the
solution of problem (5.79), and in turn (5.77) via IRAM, is illustrated for
clarity in Algorithm 1. A similar procedure was followed in [20] for the
computation of CMM.

ALGORITHM 1: Efficient solution of problem (5.79).
Solve sparse linear system Zξ= Ab(t ) for ξ ∈Rn ;

Solve sparse linear system ZΓ=µ⊥B for Γ ∈Rn×k ′
;

Solve dense linear system (Ik ′ +B>Γ)η = B>ξ for η ∈Rk ′
;

Compute final solution x(t ) = ξ−Γη.

Timing

In Table 5.3 we report the runtime (in seconds) required by our method
as executed on an Intel 3.6 GHz Core i7 cpu with 16GB ram. We com-
pare the execution time for the exact problem with hard orthogonality
constraints (5.28) and the relaxed problem (5.32). Note that while the lat-
ter relaxation is significantly more efficient, the two formulations yielded
numerically close solutions in all our experiments (see Figure 5.30). We
show how to compute a global solution to problem (5.28). We start by
observing that the hard constraints (5.30) require the desired basis func-
tions Ψ to lie in the null space of the linear map Pk ′ := ΦΦ>A (i.e., the
projector onto Im(Φ)), or equivalently to lie in the range of I−Pk ′ (i.e.
the projector onto the orthogonal subspace). This is easily achieved by
letting Ψ= (I−Pk ′)Y, and solving the generalized eigenvalue problem:

Q̃Y = ÃYΛ, (5.80)

where Q̃ = (I−Pk ′)>(W+µR Adiag(v))(I−Pk ′) and Ã = (I−Pk ′)>A(I−Pk ′) =
A(I−Pk ′). A similar trick was recently used in [44] for computing maxi-
mum magnitude eigenvalues of a large matrix. Note that solving prob-
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k = 100 k = 200 k = 300

hard soft hard soft hard soft

∼ 120K - 112.3s - 200.5s - 304.9s

∼ 12K 40.8s 7.6s 66.7s 16.4s 79.3s 25.0s

∼ 1.2K 1.1s 0.7s 2.2s 1.0s 4.6s 1.4s

Table 5.3: Runtime comparison for global optimization of our problem under hard
(5.28) and soft constraints (5.32) across different mesh resolutions (number of faces)
and basis size k. Tests denoted by ‘-’ could not run due to memory limitations.

lem (5.80) involves the explicit construction of a dense n ×n matrix Pk ′,
becoming prohibitive for large meshes.

Choice of parameters

Parameters µR and k ′ control the locality and the number of global har-
monics to use, respectively, and are application-dependent (see Sub-
section 5.4.5). Parameter µ⊥ enforces orthogonality w.r.t. the standard
Laplacian eigenfunctions, and should be chosen large enough so that
the orthogonality constraints are satisfied. In our experiments we used
µR ≈ 102 and µ⊥ ≈ 105; see Figure 5.30 for a quantitative evaluation on
the choice of µ⊥.

5.4.5 Applications

Localized manifold harmonics are a general tool that can be employed as
a drop-in replacement for, or in conjunction with the classical manifold
harmonics ubiquitous in spectral shape analysis. We showcase their ap-
plication in two broad tasks in graphics: spectral shape processing and
shape correspondence.

Spectral shape processing

In this context, the surface M is represented as a vector-valued func-
tion x : M → R3, encoding the spatial coordinates of its embedding in
R3; transformations to the surface geometry are then phrased as filter-
ing operations applied to the coordinate functions. Vallet and Lévy [146]
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Fig. 5.30: Left: Matrix of inner products (〈bi ,b j 〉L2(M )), where bi ,b j ∈
{φ1, . . . ,φk ′ ,ψ1, . . . ,ψk }. Here ψi are the optimal localized basis functions computed
with µ⊥ = 10−1 (first column) and µ⊥ = 105 (second column). Right: We plot the
discrepancy between solutions to the exact (5.28) and relaxed (5.32) problems as a
function of µ⊥, measured as the L2 distance between the resulting spectra.

proposed to perform such filtering in the Fourier domain, where the co-
ordinates x are expressed as linear combinations of Laplacian eigenfunc-
tions,

x = ∑
i≥1

〈φi ,x〉L2(M )φi , (5.81)

where, with some abuse of notation we denote, 〈φi ,x〉L2(M ) = (〈φi , x1〉L2(M )

, . . . , 〈φi , x3〉L2(M )). By truncating the summation to the first k ′ terms, one
obtains a band-limited representation of the surface. The representation
is coarse for small k ′, while finer details are captured for large values of
k ′; see Figure 5.31 (top row) for an example. The expression in (5.81) pro-
vides an effective way for representing and manipulating simple shapes
with smoothly varying coordinate functions, which can be compactly
represented in the first few harmonics. Conversely, this representation
is much less efficient for surfaces having details at smaller scales.

Assume a given set of regions, identifying areas of the shape with ge-
ometric detail. By computing localized harmonics {ψ j } j on the given re-
gions, we obtain a representation of the surface geometry:
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k ′ = 50 k ′+10 k ′+20 k ′+30 k ′+40 k ′+50

MH

PMH

LMH

· · ·

regions Ri

Fig. 5.31: First row: Surface reconstruction via (5.81) using the first k ′ to k ′+50 Laplacian
eigenfunctions. Second row: Each finger Ri ⊂ M is treated as a separate sub-manifold,
and the eigenfunctions of the “partial” Laplacians ∆Ri are used to update the initial
reconstruction by adding 10 harmonics per finger. Third row: Reconstruction via (5.82)
with 10 localized harmonics per finger. Note the significantly higher accuracy of LMH
despite using the same number of harmonics as MH and PMH. The heatmap encodes
reconstruction error, growing from white to dark red.

x ≈
k ′∑

i=1

〈φi ,x〉L2(M )φi +
k∑

j=1

〈ψ j ,x〉L2(M )ψ j , (5.82)

where φ1, . . . ,φk ′ are the standard Laplacian eigenfunctions and
〈φi ,ψ j 〉L2(M ) ≈ 0 for all i = 1, . . . ,k ′ and j = 1, . . . ,k. For a fixed number
of terms in the series, the expression (5.82) yields a more accurate ap-
proximation of the original surface than (5.81), since the localized ba-
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µ⊥ = 0
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Fig. 5.32: Comparison between manifold harmonics (MH) and localized manifold har-
monics (LMH) without and with the orthogonality term (5.34) using k ′ = 30 and k = 40.

CMM

0.2574

LMH

0.1123

LMH (vEO)

0.1147

EO

0.1205

MH

0.1217

Fig. 5.33: Comparison between different pipelines using a fixed number of basis func-
tions (equal to 100 for all methods – LMH uses 50 global and 50 localized harmonics in
both experiments). We report the reconstruction error below each method.

sis functions capture the high-frequency content more quickly (as also
manifested in the rapid growth of the spectrum, see Figure 5.27). We
refer to Figure 5.31 for a detailed illustration of this behaviour. In Fig-
ure 5.32, we demonstrate the effect of the lack of orthogonality (µ⊥ = 0)
on the reconstruction quality, and in Figure 5.34 provide a quantitative
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Fig. 5.34: Comparisons among MH, PMH and LMH in surface representation. For each
class we report the average reconstruction error at increasing number of basis functions
(x-axis). Here, ξ denotes the error obtained by MH with k ′ = 50. The heatmaps encode
reconstruction error, growing from white to dark red.

evaluation on pre-segmented meshes from the Princeton segmentation
benchmark [31]. In these tests, we compare with standard manifold har-
monics (MH) and “partial” manifold harmonics (PMH). The latter ap-
proach consists in reconstructing the surface indicated by each region
Ri ⊂ M separately by using the eigenfunctions of the Laplacian ∆Ri ; the
reconstructed part is then “glued” back to the full shape. We measure the
point-wise reconstruction error by the Euclidean distance between each
reconstructed vertex and its corresponding point in the original surface.
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100908070k = 60

Fig. 5.35: Incremental hand reconstruction using EO basis functions [33] and the bi-
nary regions of Figure 5.31.

Comparison to other pipelines

Differently from our method, both CMM [110] and elliptic operator (EO)
[33] do not allow to build upon and enrich a given set of basis functions.
In particular, CMM relies on the assumption that the set of localized ba-
sis functions covers the entire surface, while EO employs a soft potential
with global support. In Figure 5.33 we compare the reconstruction er-
ror of standard MH, EO using the potential defined in [33], our method
using the latter potential as a soft region vEO, our method using the bi-
nary regions of Figure 5.31, and CMM using a covering set of compressed
modes. The better performance of LMH is motivated by two key prop-
erties. First, we allow to easily control the surface regions for localizing
the refinement (unlike CMM); second, LMH gain benefit from the under-
lying global harmonics, enriching them where needed and maintaining
good quality outside the support of the regions (unlike EO). For com-
pleteness, we also test the performance of EO when fed with a sequence
of binary potentials (the finger regions in Figure 5.31). We emphasize
that EO is not designed to operate in conjunction with an existing ba-
sis, hence there is no natural way to implement an incremental update
as the one shown in Figure 5.31: the harmonics computed on each bi-
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Fig. 5.36: Functional map matrices w.r.t. the standard Laplacian eigenbasis (left) and
w.r.t a “mixed” basis composed of k ′ Laplacian eigenfunctions and k +k localized har-
monics (middle). The maps encode the ground-truth correspondence between the two
shapes shown on the right; the regions used for the computation of LMH are high-
lighted in red and blue. Note the block-diagonal structure of the second matrix, a man-
ifestation of the capability of LMH to encode local information compactly.

nary region would not have an underlying global structure to attach to.
For this reason, we provide an extra region (the palm) where 50 EO basis
functions are computed, and this basis is incrementally updated with 10
EO basis functions per finger. The result is shown in Figure 5.35.

Shape correspondence

As we saw in the Chapter 4 Ovsjanikov et al. [115] proposed to represent
correspondences between shapes by a linear operator (called functional
map).

As a linear operator, the functional map T admits a matrix represen-
tation C = (ci j ) w.r.t. bases {φM

i } and {φN
j } on L2(M ) and L2(N ) respec-

tively,
T f = ∑

i j≥1

〈φM
i , f 〉L2(M ) 〈TφM

i ,φN
j 〉L2(N )︸ ︷︷ ︸

c j i

φN
j , (5.83)

for an arbitrary f ∈ L2(M ). By choosing the Laplacian eigenfunctions
on M and N as the bases {φM

i } and {φN
j }, one can truncate the series
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Fig. 5.37: Mean geodesic error vs. number of basis functions used in the functional
map representation. Note that LMH lead to an increase in accuracy, resulting in turn in
a more compact representation of the correspondence. Here ξ is defined as the mean
geodesic error of MH at k ′ = 50.

(5.83) to the first k ′ terms – hence obtaining a compact representation
which can be interpreted as a band-limited approximation of the full
map. Correspondence problems can then be phrased as searching for
a k ′ × k ′ matrix C minimizing simple data fidelity criteria [111, 115] or
exhibiting a particular structure depending on the correspondence set-
ting [80, 122, 128].

Similar to the previous experiments, the standard Laplacian eigenba-
sis may not be the best choice in the presence of fine details: the low-pass
nature of the spectral representation of the map, embodied in matrix C,
negatively affects the quality of the representation at a point-wise level.
Indeed, recovering a point-to-point map from a functional map is con-
sidered a difficult problem in itself [129,149], and is at the heart of several
applications dealing with maps.

LMH can be directly employed for representing functional correspon-
dence in conjunction with the Laplacian eigenbasis:



144

1 25 50 75 100

0.01

0.02

0.05

0.1

0.2

0.4

basis dimension

m
ea

n
ge

o
d

es
ic

er
ro

r
MH
LMH

region MH

k = 50

MH

k = 100

LMH

k = 100

Fig. 5.38: Accuracy improvement in the functional map representation, obtained by
introducing LMH after k ′ = 50 Laplacian eigenfunctions. On the right we show the re-
gions used for LMH and the geodesic error (encoded as hot colors, growing from white
to dark red) obtained for different configurations. Note the higher accuracy attained by
LMH for the same amount of basis functions.

T f =
k+k ′∑
`,m=1

〈ωM
` , f 〉L2(M )〈TωM

` ,ωN
m 〉L2(N )ω

N
m , (5.84)

where ω ∈ Ω and Ω = {φi }k ′
i=1 ∪ {ψ j }k

j=1 is the union of the standard and
localized manifold harmonics. Note that the formula above allows for
‘cross-talk’ between the MH and LMH bases, and it can be seen as a
localized refinement to some initial correspondence represented in the
(global) Laplacian eigenbasis. An example of the resulting correspon-
dence matrix C is shown in Figure 5.36.
In Figure 5.37 we show a quantitative comparison between the two rep-
resentations (5.83) and (5.84). For this experiment we use near-isometric
shapes from the TOSCA dataset [19]. For each pair of shapes, we use their
ground-truth point-to-point correspondence to construct functional maps
of increasing size in the Laplacian eigenbasis and in the LMH basis. For
the latter, we use Eq. (5.84) with k ′ = 50 and k increasing from 1 to 50. The
harmonics {ψM

`
,ψN

m }k
`,m=1 are localized to the regions having large recon-
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struction error, computed as in the previous experiments. Note that even
though these regions can be arbitrarily disconnected and irregular (see,
e.g., Figure 5.38), our framework can be applied without modifications.
A point-to-point map is recovered from each functional map using the
nearest neighbor approach [115]. We measure the correspondence qual-
ity via its geodesic error. Assume a point-to-point match (x, y) ∈M×N is
recovered, whereas the ground-truth correspondence is (x, y∗); we com-
pute the quantity

ε(x) = dN (y, y∗)p
Area(N )

, (5.85)

where dN is the geodesic distance on N . For the second set of experi-
ments we consider a challenging setting of shape correspondence known
as deformable object-in-clutter [37]. In this scenario, the task is to match a
given model to a scene where the model appears in a different pose, and
in the simultaneous presence of clutter (extra objects) and missing parts.
The problem was recently tackled in [37] using the functional map rep-
resentation; to our knowledge, this method represents the current state
of the art for this class of problems. As data for these tests we use the
entire dataset adopted for the comparisons in [37]. The dataset consists
of 3 TOSCA models (cat, centaur, dog) and 150 synthetic scenes in which

u : M → [0,1] ψ4 ψ5 ψ9 ψ10

Fig. 5.39: Localized manifold harmonics on a soft region encoded by function u. No
thresholding is required in order to obtain a valid set of functions minimizing the energy
(5.33).
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Fig. 5.40: Comparisons with the state of the art in deformable object-in-clutter. All
methods use the same input data.

LMH FOiC LMH FOiC

Fig. 5.41: Qualitative comparisons between our LMH-based approach for deformable
shape correspondence in clutter and the state of the art [37]. For each experiment
we show the dense correspondence (corresponding points have same color) and the
geodesic error (hot colors growing from white to dark red).

the models appear. Sparse point-to-point matches (around 10) between
models and scenes, obtained using the approach of [127], are also pro-
vided. Given m input matches, we construct a mixture of m Gaussians
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Fig. 5.42: Left: Correspondence accuracy in the object-in-clutter setting. Each curve
corresponds to a functional map expressed in a different basis, using the same input
data. We show the performance when using k = 10 (solid curves) and k = 50 (dashed
curves) basis functions. In this example, MH could not reach the quality of LMH for any
choice of k. Right: Functional map matrices in the LMH basis {ψ} (top) and in the MH
basis {φ} (bottom).

with equal variance (set to 1% of the shape diameter) to define a soft re-
gion u on both model and scene (see Figure 5.39). We then construct a
functional map C upon the input sparse correspondence, and represent
it w.r.t. k = 15 localized manifold harmonics computed on the soft re-
gions (note that here we do not use any global eigenfunction, i.e., we set
k ′ = 0 in (5.84)). Finally, we recover from C a dense point-to-point map lo-
calized on u using the intrinsic ICP approach of [115]. The results of this
experiment are reported in Figure 5.40 quantitatively and in Figure 5.41
qualitatively. Despite the simple approach, our method gains a signifi-
cant improvement in accuracy, of up to 25% upon the state of the art on
this benchmark, highlighting the inherent robustness of LMH to miss-
ing parts and topological artifacts. Finally, in Figure 5.42 we compare (on
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a single pair of shapes) our pipeline with the counterparts obtained by
replacing LMH with MH and PMH.

Limitations

Perhaps the biggest limitation of our approach lies in the availability of
regions (or soft counterparts thereof) upon which to carry out the local-
ized spectral analysis. Such information may not be available in certain
unsupervised applications, where it is often difficult to define a meaning-
ful segmentation – indeed, an inherently task-specific notion suggesting
the use of data-driven approaches. Further, similarly to the classical set-
ting, it is not obvious how to choose the number of harmonics to employ
for a given task.

5.4.6 A non-optimal localized basis

In this Subsection we introduce an alternative method to obtain a new
set of k basis functions for a manifold M that are smooth, orthonormal,
and localized on a region R ⊆ M , that could be added to a given or-
thonormal basis functions φ1, . . . ,φk ′, for example the first k ′ Laplacian
eigenfunctions. We define the new basis solving an optimization prob-
lem for which it is not guaranteed an optimal solution. In addition, the
proposed non optimal solution is not very efficient. For these reasons we
prefer the LMH solution. This alternative solution generates the local ba-
sis by filtering the standard MH. It therefore remains in the spirit of this
thesis.

We are looking for a set of functions
{
ψ j

}k
j=1 that has the properties

already explained.
We can formulate this problem as a constrained optimization prob-

lem in a optimization variable Ψ = [
ψ1 . . .ψk

]
, a N × k matrix of which

columns are the basis functions. The constrains and the cost functions of
the optimization problem are properly chosen to meet the targets listed
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above. First of all, in order to reduce the dimensionality we use the eigen-
basis to achieve a coefficients-based representation of our optimization

variable. Given
{
φl

}Ñ
l=1, with Ñ ≤ N , a subset of the eigenfunctions in-

stead of looking for the functions ψ j we can consider its coefficients in
the Fourier transform, in other words:

ψ j =
Ñ∑

l=1

〈
ψ j ,φl

〉
L2(M )φl =

Ñ∑
l=1

xl , jφl .

We so obtain a Ñ ×k matrix X = (xl , j ) of Fourier coefficients. At this point
we can use X as optimization variable. X can be view as the Fourier rep-
resentation of Ψ. Once we have X we can return to the spatial represen-
tation

[
ψ1 . . .ψk

] = [
φ1 . . .φÑ

]
X , that we can abbreviate in a matrix form

asΨ=ΦX . In this context we present below how we reach the proprieties
listed above imposing constraints to the coefficients matrix X .

1. Orthonormality

The claim of orthonormality of the basis is equivalent to the following
request:

Ψ>ΩΨ= I .

In terms of coefficients we have:

Ψ>ΩΨ = (ΦX )>ΩΦX = X >Φ>ΩΦX = X >I X = X >X .

If we are looking for a solution X that belongs to M atR(Ñ ,K ) the mani-
fold of real valued matrices with dimension Ñ ×K , the constraint X >X =
I can be forced imposing to find the solution in the Stiefel manifold, the
submanifold of M atR(Ñ ,K ) defined as:{

A ∈ M atR(Ñ ,K )|A>A = I
}

.

We optimize the solution of our cost function imposing to the solution
to be a point on the Stiefel manifold, this constraint ensure us to obtain
orthonormal set of functions.
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2. Smoothness

in order to ensure the smoothness of the function ψk we add the Dirich-
let energy as a term of our cost function. As we have already seen the
Dirichlet energy can be written in terms of the LBO as:

tr (Ψ>∆MΨ),

where tr is the trace operator. The minimization of this energy guaran-
tees the smoothness of the basis functions. Using X the Fourier repre-
sentation of Ψ we rewrite this energy in the following equivalent formu-
lation:

tr (X >ΛM X ), (5.86)

where ΛM is the diagonal matrix with the element of position (l , l ) equal
to λl the l -th eigenvalue of ∆M .

3. Locality

For this property we start from a subdivision of the mesh in Q semantic
segments, eventually overlapped, S1, . . . ,SQ such that:

M ⊆
Q⋃

q=1
Sq .

This segmentation can be represented as a set of Q indicator functions{
rq

}Q
q=1 where:

rq (i ) =
{

1, if i ∈Sq

0, otherwise
.

Now suppose that K the cardinality of our basis can be divided by Q
without loss of generality, so there exists a value p ∈N such that K = pQ.
From these indicator functions we can get a mask that allows functions
to be non-zero only in the segments that we select. Let e be the constant
function equal to 1 on all the vertices. We can place side by side p copies
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Fig. 5.43: Some ordered basis functions on the six segments of an hand computed im-
posing the M ASK filter and the “triangular filter”. As can be seen the new basis are
localized but in some case there is some energy outside the selected region ()

of the matrix
[
e − r1, . . .e − rQ

]
, obtaining a matrix N ×K , namely M ASK .

In M ASK e minus the Q regions are alternate and repeating p-times. So
M ASK is 0 on the vertices that belong to the segments, which are alter-
nate in the columns, and 1 on the rest. Now we consider the spatial rep-
resentation of the functions Ψ, so Ψ=ΦX and we can write the following
constraint:

‖Ψ¯M ASK ‖2
F , (5.87)

where ‖‖F is the Frobenius norm and ¯ is the element wise product be-
tween the two matrices. In order to make explicit the variable X we can
write the equation 5.87 as

‖ΦX ¯M ASK ‖2
F , (5.88)

Minimize this norm is equivalent to require that the function ψk restricts
its non-zero values in the segment that corresponds to the k-th column
of the matrix M ASK .
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Fig. 5.44: On the left an example of a “triangular filter” used in our experiments. On
the right the first basis function computed without the “triangular filter”, and recon-
struction of the hand from left to right using 60, 120 and 180 basis functions computed
without the “triangular filter”.

4. “Frequency value”

We known that the eigenbasis are sorted with respect to the absolute
value of the corresponding eigenvalues that are intrinsically related to
the frequencies of the Fourier basis that they form. This property is kindly
desired for our basis Ψ in order to maintains a frequencies-based or-
der, and allows meaningful as basis for the frequency-analysis. A natu-
ral way to get this property is to force the functions ψk to gradually be
composed from an increasing number of eigenfunctions. Starting from
the first eigenfunctions when k is small and adding some eigenfunctions
as k increases. From the coefficients point o views this coincide to ini-
tially allows non-zero coefficients only in the first positions, and while k
grows permit to more coefficients to be different from zero. To translate
this facility in a bond we build a binary filter. We divide the number of
eigenbasis Ñ by the number of frequencies that we want to obtain for
every segments, namely u. Given u we can suppose that K the cardinal-
ity of the basis s equal to uQ, that is the number of frequencies for very
regions multiplies for the number of regions. Less than approximations
we can think that there is a number w such that wu = Ñ . The filter T is
a matrix of dimension Ñ ×K equal to 0 in the upper blocks with indices
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from 1 to w( j −1) on the rows and from 1+( j −1)Q to jQ on the columns
for every j ∈ {1, . . . ,u}. All the others entries of T are equal to 1. Once we
have T we can write the constraint explicitly as:

‖X ¯T ‖2
F , (5.89)

An example of the obtained filter T can be visualized on the left of Fig-
ure 5.44. This filter is a blocks upper triangular matrix for this reason
from now on we refer to it as “triangular filter”. Moreover this filter pro-
vides for all the segments a frequency-value functions for each of the new
frequencies that we generate. As shown in Figure 5.44 without the con-
straint in equation 5.89 we can not guarantee to preserve a frequencies-
based order. The fact of find high frequencies in the first positions is also
very negative for many applications, as for example in reconstruction
task, as shown in Figure 5.44 on the right.

Complexity

We use the optimization toolbox Manopt [16] to solve our optimization
problems. The computation of around 300 functions of our localized ba-
sis ψ using 900 eigenfunctions takes on average 400 seconds for the sin-
gle mesh version and 800 seconds for the shared version on two meshes
with around 7000 vertices on a machine with 32GB of RAM using an Intel
3,6 GHz Core i7 processor.

Results and conclusion

We compare the results shown in Figure 5.31 with the ones in Figure
5.45. The heatmap used in Figure 5.45 allows to highlight more the error
(yellow and orange). Also with the optimized basis we note the improve-
ments in the accuracy of the reconstruction despite the use of the MH,
highlighted in the blue boxes on the right. In the same time it is possible
to see some not nice behaviour when we use the optimized local func-
tions, as example in the bottom part of the wrist. Furthermore, it is also
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Fig. 5.45: First row: Surface reconstruction via (5.81) using the first k ′ to k ′+50 Lapla-
cian eigenfunctions. Second row: Reconstruction via (5.82) with 10 optimized local
functions per finger. Note the higher accuracy of the localized basis despite using the
same number of MH. The heatmap encodes reconstruction error, growing from white
to dark red.

clear as to each addition of 10 the improvement given by the optimized
local functions is not so well localized, due to the non optimal solution
that generates these functions. Indeed the results shown in Figure 5.45
are worse than those obtained with LMH and this alternative method is
also not so efficient. For these reasons we prefer the localized manifold
harmonics, which are also more look for a more theoretically sound.

Future directions

We introduced a new framework for spectral shape analysis and process-
ing, allowing to perform operations which are localized to a given (pos-
sibly soft or disconnected) region of interest on the surface. Our frame-
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work is flexible, in that it can naturally enrich or fully replace the stan-
dard manifold harmonics in several tasks in graphics. We demonstrated
its applicability in applications of geometry processing and shape corre-
spondence, demonstrating a significant advantage if compared with the
standard ‘global’ constructions based on the eigendecomposition of the
Laplace operator. Despite the theoretical and empirical results provided
within this paper, we feel that our study is still just ‘scratching the surface’
of a much broader area of research, with potentially extensive applica-
tions in geometry processing and graphics. Even though quite elusive at
this stage, we foresee connections with results in localization theory (see,
e.g., [47]), leading to a promising direction of research which we believe
deserves a deeper exploration.

5.5 Conclusions

In this Chapter we propose two different methods to introduce local-
ization in the spectral geometry processing. The first one, that can be
summarized as WFT, is based on a classical signal processing tool, the
windowed Fourier transform. We propose two versions of the WFT tool
the isotropic and the anisotropic one. With WFT we introduce the use
of a window which localizes the signal on the spatial domain, and then
applies the standard global spectral analysis (the one with MH), to the
localized signal. The localization with WFT is introduced on the spatial
domain. The second method to introduce the localization in the spectral
basis is LMH. Instead of analyze signals decomposing it through global
basis, with LMH the decomposition is produced via a localized basis. In
this case the localization is introduced in the spectral domain, with LMH
indeed the signal remains the same but is the basis that defines the spec-
trum that is localized.
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Localized non-spectral geometry processing

In this Chapter we move the attention from the spectral methods to some
method related with the spatial geometry. Despite methods such as WFT
and AWFT deal with the connection between geometric object in the 3D
space and their spectral representations, the methods presented in Chap-
ter 5 mainly analyze points and surfaces from the spectral point of view.
However, spectral analysis is not the unique kind of local analysis that can
be adopted on surfaces. In this Chapter we introduce the Discrete time
evolution process as an example of 3D spatial local analysis on surface.

6.1 Need for spatial localization

The idea of localization is in some sense more intuitive in the non spec-
tral case. If we define a spatial distance between points on a given sur-
face M then for a point x ∈ M we can subdivide the surface in two re-
gions, the neighborhood of x and the rest of the surface. This definition
of a neighborhood of a point is something very standard in graph theory.
The neighborhood of x can be seen as a localized context with respect
to which the point x can be analyzed and described. Starting form an
entire shape M , is it clear how we could define different levels of local-
ization around a point x that belongs to M . An example of these levels
of localization can be seen in Figure 6.1. In this figure for a pair of points
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highlighted with a small black spheres on M are proposed 5 different lev-
els of localization depicted as red regions on the surface in an decreas-
ing level of localization. On the first row analyzes a point on the top of a
back thigh, while on the second row the point is taken from the neck of
the Moose. As can be seen the first two levels on the left are very simi-

Fig. 6.1: Different levels of localization computed for two different points on the Moose
shape. The points are highlighted with a small black spheres. In each row we show the
neighborhoods of one of the two point in a decreasing level of localization from left to
right.

lar for both the points. In the level in the middle some difference starts
to be represented. In the last two levels on the right the geometry of the
neighborhoods is definitely different. In our work, Discrete time evolu-
tion process, we would like to describe and characterize the points on the
surface encoding in an theoretically sound framework the information
that is possible to see in Figure 6.1.

6.2 Discrete time evolution process

The discrete time evolution process is a framework for the shape anal-
ysis that starting from a generic pairwise relation between every pair of
points on the surface, allows to obtain a more complete and informative
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description of each point with respect to different levels of localization of
its neighborhood. In this spirit the discrete time evolution process can be
view as a localized tool for geometry processing. For more details on the
discrete time evolution process please refer to [103].

6.2.1 Overview of the framework

We propose to encode the relation between points by exploiting an alter-
native evolution paradigm. Rather than considering a continuous time
evolution we introduce a special operator that is applied iteratively on
the surface. Our process operator is designed to explicitly integrate infor-
mation across the shape by taking into account the relation of a given
point to the rest of the surface. In particular, our operator is specified
by a function that encodes the direct pairwise relations between sur-
face points. Then, the iterative procedure allows our method to explore
also indirect (or second-order) relations. This leads to a new discrete-time
evolution scheme to represent the gradual change of the “context” of the
each point. As an example when the relation function is defined by the
geodesic distance, our process operator encodes the set of paths of grad-
ually increasing lengths. Moreover, we effectively combine the contribu-
tion of each evolution state to obtain a final score that summarizes how
a point is influenced by the rest of the shape after an infinite number of
steps. Key to our approach is an observation that such multi-step com-
putation can be done exactly and efficiently in practice by solving a sin-
gle linear system of equations without requiring an approximation via a
reduced spectral basis.

We show the benefits of this new framework by using it to derive
a novel point signature. We build our process operator by using the
geodesic distances as relation functions. Therefore, rather than consid-
ering only the shortest paths, which are known to be susceptible to noise,
the iterative use of our operator captures the information about all paths
of arbitrary lengths between each pair of points. Finally, we introduce
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a multi-scale strategy to capture information from both small and large
neighborhoods, by controlling the length of the distance allowed in a
single step. We demonstrate that our descriptor, which we call Discrete
time Evolution Process descriptor (DEP), is highly discriminative and is
more robust than other methods to several kinds of shape transforma-
tions such as non-isometric deformations and missing parts.

Our approach closely resembles methods based on diffusion geome-
try [5,18,35,50,140], especially in its use of an infinite number of paths to
characterize points and their relations. More precisely our work is related
to diffusion based methods in that it arises from an evolution process
similarly to the HKS and WKS (already introduced in Chapter 3) which
are respectively based on the evolution process of the heat and the mo-
tion of the particles on the surface. Our method exploits an alternative
surface evolution paradigm and defines a new path-based multi-scale
point descriptor, by capturing the paths of multiple lengths without the
need to compute any spectral decomposition. Rather than focusing on
the infinitesimal or differential characteristics of the shape (such as those
defined by the Laplace-Beltrami operator), we argue for encoding the
“integral” properties of points and their neighborhoods by considering
the relations across all the other points on the shape, and by simulating a
discrete-time evolution process. Nevertheless, by basing our descriptor
directly on discrete time evolution and geodesic distances, rather than
on the differential operator such as the Laplace-Beltrami operator, we
are able to provide complementary information, with respect to existing
diffusion-based signatures. Moreover, in contrast to these approaches,
our descriptor can be computed exactly, without truncating an eigende-
composition. We demonstrate the effectiveness of our method in match-
ing shapes across a wide range of challenging scenarios. For this, we
provide results on benchmarks with increasing level of complexity and
consider different matching strategies: i) based on a direct comparison
of point descriptors, and ii) based on functional map [115] framework.



161

Our results outperform the state-of-the-art and show that the informa-
tion contained in our DEP descriptor is alternative to the one captured
by existing techniques. Our method is highly discriminative and it cap-
tures information that is alternative to the geometric attributes obtained
by other traditional diffusion-based approaches. Even if our descriptor is
built without employing any learning strategy our results are stable and
robust even when the hypothesis of isometric transformation is violated.

6.2.2 Discrete time evolution process on manifolds

We define an iterative process that evolves on the manifold and that we
observe at discrete and regular timestamps. Differently from the diffusion-
based methods, such as HKS or WKS, our evolution process is not nec-
essarily based on a differential equation that controls the process be-
haviour. Therefore, we do not need to know the evolution law that ex-
plains this process, but the process itself is fully derived from a generic
pairwise relation function as described below.

Continuous shape

Let S be a smooth surface, and F (S,R) the set of real functions defined on
S. We introduce a function d that represents a generic relation between
each pair of surface points.

d : S ×S −→R

d : (x, y) 7−→ d(x, y) ∈R s.t. d(x, y) ≥ 0 ,

Starting from the relation d we then define a process, that evolves in the
discrete time setting and depends only on the underlying geometry of
the surface. This process is governed by the relation d that represents
how the each point x is “influenced” by every other point y on the sur-
face.
We fix a finite time interval ∆t ∈ R, with ∆t > 0, and divide the posi-
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Fig. 6.2: Time discretization used for the discrete time evolution process.

tive real line in a discrete collection of instants {t0 = 0, t1, t2, . . . , tl−1, tl , . . .},
where tl = l∆t as shown in Figure 6.2. Given an initial state represented
by a real function f0 ∈F (S,R), we define the desired process as follows:

f1(x) :=
∫

S
d(x, y) f0(y)dµ(y), (6.1)

where f1 is the state after one time interval ∆t , and dµ is the infinitesimal
area element. We assume that the process is homogeneous and the evo-
lution is the same at every time step. Thus, we can iterate this operation
by obtaining the state after a generic number l of discrete intervals as:

fl (x) :=
∫

S
d(x, y) fl−1(y)dµ(y). (6.2)

Using this relation, we introduce the process operator P that gives us
the state of the process after the discrete interval of time. Therefore, we
write:

P( f0) = f1 =
∫

S
d(·, y) f0(y)dµ(y) (6.3)

and iterating on l ∈N we obtain:

fl = P( fl−1) = P(P( fl−2)) = . . . = P(P(· · · (P( f0))))︸ ︷︷ ︸
l−times

.

Finally, for every point x on S we define a scalar value that sums
up the contributions of the process from every discrete time tl with
l ∈ {0, . . . ,+∞}. Therefore, we introduce an evolution process score s at
a point x ∈ S as follows:

s(x) =
∞∑

l=0

fl (x) = f0(x)+
∞∑

l=1

∫
S

d(x, y) fl−1(y)dµ(y). (6.4)
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Discrete shape

In the discrete setting we represent S by a triangular mesh M with N
vertices V = {vi }N

i=1. We divide the surface in barycells centered at every
vertex vi of the mesh, and denote by Ωi their areas. Note that in this case
the set F (S,R) =RN and the function d corresponds to a matrix D ∈RN ×
RN where:

Di , j = d(vi , v j ) ∈R s.t. d(vi , v j ) ≥ 0, ∀vi , v j ∈ V .

Following the discussion above, we can redefine the same evolution pro-
cess that we created in the continuous setting as follows. Given an initial
state f0 ∈RN , our process is defined as

f1(vi ) :=
N∑

j=1

Ω j Di , j f0(v j ), (6.5)

and f1 is the state after one interval ∆t . Here, the integral from equation
6.1 is replaced by the weighted sum according to the local areas. Then we
can obtain the state after a generic number l of discrete time intervals as:

fl (vi ) :=
N∑

j=1

Ω j Di , j fl−1(v j ). (6.6)

We build the diagonal matrix A = di ag (Ai ), with the area Ai of the barycell
centered in vi . Then we can adopt a matrix notation to model the pro-
cess. We denote by P the discrete process operator defined by the N ×
N real matrix DA, more explicitly the element (i , j ) of the matrix P is
P(i , j ) = A j d(vi , v j ). Now we can write the discrete analogue of Eq. (6.3):

P f0 = f1 = DA f0 =
N∑

j=1

Ω j D ·, j f0(v j ).

and iterating on l ∈N we obtain:
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fl = P fl−1 = P(P( fl−2)) = . . . = P(P(· · · (P f0)))︸ ︷︷ ︸
l−times

= Pl f0,

where Pl = (DA)l is the process operator for l steps. Finally, we obtain our
evolution process score via the discrete version of Eq. (6.4):

s(vi ) =
∞∑

l=0

fl (vi ) = f0(vi )+
∞∑

l=1

( N∑
j=1

Pl (i , j ) f0(v j )
)
. (6.7)

6.2.3 Analysis of Higher Order Relations

Here we discuss the meaning of the proposed evolution process in terms
of higher order relations between points that belong to the surface. Note
that while the process evolves our process operator Pl takes into account
indirect links between the vertices. We consider these indirect links as
higher order relations. More specifically, Equation (6.5) encodes the first-
order relations of vi and it can be rewritten as:

f1(vi ) :=
N∑

j=1

pi , j f0(v j ), (6.8)

where pi , j := P(i , j ) represents how vertex vi is “influenced” by v j on
the discretized shape. Now we evaluate the behaviour of the process in
the higher order relations. Let σ denote a generic subset of l +1 vertices{

vσ(0), . . . , vσ(l )

} ⊆ V , with possible repetitions. We can define the contri-
bution wσ of σ to the evolution process as:

wσ =
l−1∏
k=0

pσ(k),σ(k+1) =
l−1∏
k=0

Ωσ(k+1)d(vσ(k), vσ(k+1)), (6.9)

Let Pl
i , j denote the collection of all the subsets l +1 vertices, starting with

i (σ(0) = i ) and ending with j (σ(l ) = j ). To account for all subsets in Pl
i , j ,

and following standard linear algebra we compute:
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Pl (i , j ) = ∑
σ∈Pl

i , j

wσ (6.10)

Therefore, our process operator for l order Pl (i , j ) represents how the vi

is “influenced” by all l-order relations between vi and v j .
Moreover, for every initial state f0, we define the l -order evolution

state at vertex vi as:

fl (vi ) =
N∑

j=1

Pl (i , j ) f0(v j ), (6.11)

Intuitively fl (vi ) encodes the quantity of the state f0 “absorbed” in vi

from the l -order relations in the evolution process.
The evolution process score for each vertex of the mesh is defined sum-

ming over l as: s(vi ) =∑∞
l=0 fl (vi ), so it can be obtained as in Equation 6.7.

Now, to generalize the computation of this score we introduce the score
operator S as the geometric series of matrix P:

S =
∞∑

l=0

Pl . (6.12)

Note, however, that since S increases exponentially with l , the infinite
sum may diverge and so S may not be well-defined. To overcome this
problem we employ a simple generating function strategy. Generating
function regularization [56] is used to assign a consistent value for the
sum of a possibly divergent series. There are different forms of generating
functions [10] for some examples. To this end, we define the regularized
score operator as:

Š =
∞∑

l=0

r l Pl . (6.13)

where r is a scalar regularization parameter. In order to ensure the con-
vergence, we choose r so that |r | < 1

ρ(P) , where ρ(P) is the spectral radius
of P. In order to give a more formal argument, the value of r (used in the
generating function) can be determined by relying on linear algebra [64].
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Lets consider {λ0, ...,λn−1} eigenvalues of the matrix P, drawing from lin-
ear Algebra we can define the spectral radius ρ(P) as:

ρ(P) = max
λi∈{λ0,...,λn−1}

(
|λi |

)
.

For the theory of convergence of the geometric series of matrices we have
also that:

lim
l→∞

Pl = 0 ⇐⇒ ρ(P) < 1 ⇐⇒
∞∑

l=0

Pl = (I−P)−1.

Furthermore another theoretical result indicated as Gelfand’s formula
states that for every matrix norm we have:

ρ(P) = lim
k−→∞

||Pk || 1
k .

This formula leads directly to an upper bound for the spectral radius of
the product of two matrices which commutes, given by the product of
the spectral radii of the two matrices, that is for each pair of matrices P
and B:

ρ(PB) ≤ ρ(P)ρ(B).

Starting from the definition of š(i ), and from the following trivial consid-
eration

r l Pl = (
r l I

)
Pl = [(r I)P]l ,

we can use Gelfand’s formula on r I and P and thus obtain:

ρ
(

(r I)P
)
≤ ρ(r I)ρ(P) = rρ(P), (6.14)

For the property of the spectral radius: liml→∞ (r P)l = 0 ⇐⇒ ρ(r P) < 1.
Thus if we choose r such as 0 < r < 1

ρ(P) , then we have:

0 < ρ(r P) = ρ
(

(r I)P
)
≤ ρ(r I)ρ(P) = rρ(P) < 1

ρ(P)
ρ(P) = 1 ,
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that implies ρ(r P) < 1, and so that:

Š =
∞∑

l=0

(r P)l = (I − rP)−1.

This choice of r allows us to have convergence in the sum that defines
š(i ). From an algebraic view, Š can be efficiently computed by using the
convergence property of the geometric power series of a matrix [64]:

Š = (I− rP)−1 (6.15)

Matrix Š encodes the information about the geometry between our set of
vertices, and the chosen relation function d . Finally, we can obtain the
evolution process scores for each vertex simply as:

š(vi ) = [(Š f0)](i ), (6.16)

which can equivalently be computed by solving the linear system: (I−
rP)(š) = f0. This interpretation makes it clear that, for every vertex vi the
computed score š(i ) is obtained by summing the contributions of all the
relations starting at vi , and evolving along the surface under the condi-
tions imposed by the process operator P, for all time scales, going to in-
finity. Note that from the pairwise relations encoded by D our evolution
process allows to obtain and incorporate higher-order information. All
the components involved in our framework are highlighted. In the next
Subsection 6.2.5 we will give a deeper analysis of these components.

6.2.4 Connection to Continuous process

Our discrete time evolution process is defined by

fl+1 = P fl .

Let us now suppose that exists a matrix B such that:

P = e∆tB .
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This assumption is far from trivial, and it is possible only for a particular
set of P. If we satisfy this condition, and focusing on the limit case of∆t →
0, we can consider the continuous process associated to the following
partial differential equation:

∂ f

∂t
= B f .

It is well-known that for every initial state f0 the state of this continuous
process at time t is defined as:

ft = e tB f0 .

So we have that for every discrete time interval ∆t and for every integer
l :

fl∆t = e l∆tB f0 = Pl f0 ,

which corresponds to our discrete time evolution process. In the same
spirit we can obtain a connection between the integration over all times
of the continuous process and our evolution process score. In the con-
tinuous notation we can compute the following equation:∫ ∞

0
fτdτ=

∫ ∞

0
eτB f0dτ=−B−1 f0 .

Now if we fix a time interval ∆t as we did in the previous paragraph, we
can rewrite this integration at discrete times as:

∞∑
l=0

Pl f0∆t = (I −P)−1 f0∆t .

Assuming P = e∆tB as above, for ∆t → 0 we have:

(I −P)−1 f0∆t =−(∆tB)−1 f0∆t =−B−1 f0 .

Therefore, if we consider our evolution process score š = (I −P)−1 f0 and
forgetting ∆t (as multiplicative constant value) š corresponds to the in-
tegration over all times of the continuous process.
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This highlights how the continuous process is related to our discrete
time evolution process, and also how the score š is related to the contin-
uous process in this specific context.
Clearly this connection depends on a strong assumption, and holds only
for very specific relation functions d . One of the main goals of our frame-
work, however is to enable the use of a generic pair-wise relation without
limiting its choice in order to meet some conditions. For this reason, we
encode this relation via a discrete process, which allows us to obtain a
score, even when the evolution is not governed by a continuous-time,
diffusion-like procedure.

6.2.5 Proposed Descriptor

We investigate how the proposed evolution process described in previ-
ous paragraph can be exploited to define a new class of 3D point descrip-
tors. The choice of the components of the evolution process is crucial to
identify the encoded information. In particular, the main components
are i) the relation function, ii) the regularization parameter, and iii) the
starting state.

The relation function

The most important parameter is the relation function D that in princi-
ple can be defined by any positive two variables function. In practice, the
characteristics of the chosen relation function determine the kind of in-
formation that is spread across the shape by the evolution process and
therefore the effectiveness of the derived descriptor highly depends on
this choice. In this context the most natural options are distance func-
tions, kernels or generic (dis-)similarity measures. In our work, we build
the process operator P using the geodesic distance G (vi , v j ), i.e., the
length of the shortest path on M between vertices vi and v j . We moti-
vate this choice by the fact that geodesic distances are, by definition in-
variant under isometric transformations, and can be used to capture the
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geometry of the shape effectively. Moreover, as we demonstrate below,
our discrete time evolution procedure that allows to incorporate infor-
mation across an infinite set of paths helps to gain both informativeness
and robustness against non-isometric shape changes. More specifically,
we define the matrix of vertex relations D as:

D(i , j ) = 1− Ĝ (vi , v j ),

where Ĝ (vi , v j ) = G (vi ,v j )

diam(M ) is the normalized geodesic distance and we de-
note with diam(M ) the diameter of M , that is defined as the maximum
of the geodesic distances between every pair of vertices on the surface.
Therefore D(i , j ) ∈ [0,1], D(i , i ) = 1,∀i , and the process operator writes
P = DA. This choice implies that each vertex absorbs more information
from its neighborhood, decreasing gradually the influence of vertices
that are further away from it. Moreover, the integration of the geodesic
distance in our process operator leads to higher order relation Pl that is
analogous to the l−order paths between pairs of points. Therefore, the
interpretation of the evolution process is more intuitive as the encoding
of paths at multiple lengths.

The regularization parameter

The second parameter that is important to fix is the regularization pa-
rameter. As mentioned in the previous section, r must be smaller than

1
ρ(P) to ensure the convergence of the regularized score operator defined
in Equation 6.13. We keep this choice as a free value r = c

ρ(P) parametrized
by c ∈ (0,1). It is worth noting that c determines the speed of conver-
gence: values close to 0 means fast convergence and vice versa. In prac-
tice, when the convergence is fast (slow) the influence of the highest or-
der relations is reduced (preserved). For instance if c is close to 1 the
longest paths are just as relevant for the construction of the descriptor
as the shorter ones.
Now we provide a discussion of the behaviour for the limit case of r → 0.
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In our method we compute our score v solving the following linear sys-
tem:

(I − r P)v = e .

If we consider the exponential of the matrix −r P we have:

e−r P =
∞∑

k=0

(−r )k(P)k

k !
= I − r P+ r 2P2

2
+ . . .

Now in the limit case of r → 0 we can approximate e−r P as

e−r P ≈ I − r P.

So we can write:
(I − r P)v ≈ e−r Pv = e

and multiplying left and right sides for er P we obtain:

v = er Pe .

From this point of view v is the state after a time r of a process governed
by er P. Generalizing this process for a initial state f at time 0 we obtain
the state at time r as:

fr = er P . f

Using the previous approximation (I − r P)v ≈ e−r Pv = e we can recover
the partial differential equation that defines this process.

fr = er P f ≈ (I + r P) f = f + r P f

from which we have:

fr − f

r
= P f , and for r → 0, we get

∂ f

∂t
= P f .

So we can conclude that in the limit of r → 0 our score can be computed
as the first step of a different process for a time equal to r . This is not very
useful for our framework because it is only a limit case and the connec-
tion with our method is given only for a infinitesimal time interval.
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The starting state

A further important parameter to settle is the starting state f0. The choice
of this state also plays an important role in controlling the kind of infor-
mation that is encoded. The options can be different and related to the
specific application at hand. In our work we are interested in evaluating
how the evolution process itself is able to encode the geometric infor-
mation. Therefore we would like to keep the contribution of the start-
ing state neutral. To this purpose, we choose a constant distribution on
the surface as the initial state: f0 = e, i.e., the constant function, encoded
with a vector with all the entries equal to 1.

Multi-scale Approach

Finally, in order to construct a multi-scale descriptor we can consider a
family of weighted operators Pδ, parameterized by a scalar δ ∈ [0,1]. We
define the new matrix of vertex relations Dδ as:

Dδ(i , j ) = 1− Ĝδ(vi , v j ),

where Ĝδ(vi , v j ) = Ĝ (vi , v j ) if Ĝ (vi , v j ) ≤ δ and 1 otherwise. Thus, the
new process operator becomes Pδ = DδA by only considering geodesic
balls of radius δ, which implies that in a single discrete time step, the
relation is limited to points at distance δ. Intuitively, for small values of
δ our matrix Pδ makes a vertex dependent on a small neighborhood by
capturing more local properties of the shape, while for larger values of
δ, Pδ exploits more global structures of the shape. This way, the parame-
ter δ can be interpreted as the speed at which information is propagated
across the shape in our discrete-time evolution process. Note that this is
somewhat in contrast with diffusion-based methods, where all changes
are completely global, since, e.g., the classical heat equation implies that
heat propagates at infinite speed, which, in particular, is not compatible
with the special theory of relativity [45].
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ALGORITHM 2: Computation of DEP Descriptors

Input: M the mesh,
{
δq

}Q
q=1 s.t δq ∈ [0,1] .

Output: DEP the matrix of descriptors.
for i = 1 : n do

for j = 1 : n do
Compute A, diagonal matrix, with A(i , i ) = Ai area of the barycell centered in vi ;
Compute Ĝ (vi , v j ), the normalized geodesic distance between vi and v j ;

Ĝ (vi , v j ) = G (vi ,v j )
diam(M ) ;

end
end
for q = 1 : Q do

if Ĝ (vi , v j ) ≤ δq then
Ĝδq

(vi , v j ) = Ĝ (vi , v j );

else
Ĝδq

(vi , v j ) = 1;

end

Dδq
(i , j ) = 1− Ĝδq

(vi , v j ), ∀i , j ∈ {1, . . . ,n};
Compute Pδq

= Dδq
A;

Compute rδq
= c

ρ(Pδq ) , with c ∈ (0,1);

Solve the linear system (I− rδq
Pδq

)v = e;
šq = v;

end
matrix DEP = [

š1, . . . , šQ
]
, s.t. the i th row, encodes the Discrete time Evolution Process descriptor for the

vertex i .

Discrete time Evolution Process descriptor

Once the main components of the evolution process are fixed and the
multi-scale paradigm is defined, we are ready to propose a new shape
descriptor. We fix a set of Q scale values

{
δ1, . . . ,δQ

}
such that δ ∈ [0,1].

For each choice of δ we construct an operator Pδ, and compute the score
at scale δ. For this we solve the linear system:

(I− rδPδ)v = e

and let the score vector at scale δ be šδ = v. Here, as above, the score of
vertex i equals šδ(i ). This way we create our Discrete time Evolution Pro-
cess (DEP) descriptor, by assembling a vector of Q values to each vertex
i :

DEP (i ) = [
š1(i ), . . . , šQ(i )

]
.
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solve (I− r P)(š) = f0 š

Fig. 6.3: A visualization of the entire discrete evolution process pipeline. The first row
shows the pipeline that produces the discrete time evolution process. Starting with a tri-
angle mesh M we introduce a relation function d and a scale parameter δ. The relation
matrix Dδ and the area elements matrix A are computed to obtain the evolution process
operator P. Then, fixing an initial state f0 we run our discrete time evolution process by
highlighting the involved discrete states. Finally, once a regularization parameter r is
selected, we employ our aggregation strategy to obtain the score operator Š and the
evolution process score š. The second row shows how the score š can be computed in
practice, by solving a linear system.

In other words, for every vertex i we obtain a vector that represents in
each of its dimensions the sum of the discrete time evolution process at
vertex i , where the process performs steps of fixed maximum length. In
Figure 6.3 we represent the entire pipeline to compute our evolution pro-
cess score š starting from the pairwise relations encoded by d and a set
of parameters δ, f0 and r . The first row explains the theoretical interpre-
tation of our framework, while second row illustrates how it is computed
efficiently in practice. For completeness, we summarize the construction
of the Discrete time Evolution Process descriptor in Algorithm 2. In other
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Fig. 6.4: Scores for multi-scale on a KIDS’s shape. The scores at ev-
ery vertex is plotted as a map on the shape, the values of δ are[ 1

100 , 1
50 , 1

40 , 3
100 , 1

25 , 1
20 , 7

100 , 3
40 , 2

25 , 9
100 , 1

10 , 3
20 , 7

20 , 11
20 , 8

10 ,1
]
.

words, for every vertex i we obtain a vector that represents in each of its
dimensions the sum of every time scales evolution process in that ver-
tex given by a process that in a discrete time interval performs steps of
fixed maximum length. Figure 6.4 shows the descriptors obtained using
16 different values of δ on a human shape (from the KIDS dataset [131]).

Contribution of higher order relations

In this section we analyze the importance of the higher order relations.
Although the initial information (i.e., the geodesic distances) is already
informative, it is not sufficient to compete with methods that are able to
encode multiple paths between a pair of points such as spectral-based
methods. Therefore, to disambiguate between points having accidentally
the same geodesic distance we allow our evolution process to consider
higher order paths. We compare the performance of using just a 1-step
score with the infinite path descriptor on the toy-example in Figure 6.5.
This shape is composed of the lateral surfaces of two tetrahedra having
the same equilateral triangular bases. We can distinguish three types of
points on this shape, the blue the red and the cyan. The three red points
on the bases are considered the same because, thanks to the intrinsic
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symmetry of this shape, they only differ by a rigid rotation. The barycells
associated to each vertex are shown with their value in the figure on the
left. The geodesic distances are plotted with dashed lines in the other
two figures. Table 6.5 shows the scores computed for the 1-step and for
Še on all points in the surface showed in Figure 6.5. We can see that the 1-
step score confuses the blue point with the three red points. Conversely,
when we let the evolution process exploit paths with multiple steps, our
Še scores is able to correctly distinguishing between different types of
point. We can also obtain a theoretical bound on the robustness of our
approach against shape perturbations. Indeed if we have a matrix of the
linear system M = (I− rδPδ), and a perturbed matrix M ′ we can give the
following upper bound [55]:

||š ′δ− šδ|| ≤O (κ(M)||M ′−M ||)||šδ||, (6.17)

where šδ and š ′
δ

are the solutions of the linear problem and the per-
turbed problem respectively, and κ(M) is the condition number of the
matrix. This bound depends on the norm of the perturbation ||M ′−M ||.
In practice we have observed that the condition number is well-behaved.
We performed an experimental evaluation on different perturbed shapes
from FAUST dataset. On average we obtained κ(M) = 1.12, which sup-
ports our claim that the solutions with our method are stable. There-
fore, for small perturbations like in the case of near-isometric shapes our
method can ensure a reliable solution.

In order to emphasize the robustness of our method we analyze the
matching experiment reported in Figure 6.6. The same Duck shape is
shown on two meshes with different density. It is clear that the geodesic
distance information contained in the operator matrix P depends on the
mesh structure that is used to discretize the mesh. But thanks to the inte-
gration at all the surface the DEP descriptors are more informative even
in the presence of changes of the mesh structure. In Figure 6.6, we il-
lustrate this behaviour. We show the 1-step descriptors and our descrip-
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0.55718

2.6158

2.4081

1.2458

2

3.031

2.8613

0.7429

POINT COLOR 1-step DEP

Blue 0.5197 1.0643

Red 1 0.5197 1.0483

Red 2 0.5197 1.0483

Red 3 0.5197 1.0483

Cyan 0.3373 0.5912

Fig. 6.5: Toy-example. On the left on a simple shape three type of points are highlighted:
blue, red, and cyan. On the left the barycells associated to each vertex. Dashed lines are
the geodesic paths: the four geodesic paths from one of the red points in the middle left,
and the four geodesic paths from the blue point on the middle right. In the table on the
right of the Figure are reported the values of descriptors at points in the toy example.

2 4 6 8 10 12 14 161 2 4 6 8 10 12 14 1612 4 6 8 10 12 14 1612 4 6 8 10 12 14 161

Diffusion Distances Geodesic Distances

1-Step Our Method 1-Step Our Method

Fig. 6.6: Comparison between 1-step approach and our method using diffusion (left)
and geodesic distances (right) for two points on the Duck shape with two different
meshes with 752 and 2497 vertices respectively.

tors for some selected points on the two Duck shapes. To emphasize
the contribution of the evolution process we evaluate two different re-
lation functions. More precisely, other than using the geodesic distance
we introduce also the diffusion distance [35] to build the process oper-
ator. Then a descriptor is defined as described in Section 6.2.5 (in prac-
tice the geodesic distance is simply substituted by the diffusion distance
in the construction of the matrix D). Descriptors coming from diffusion
distance are shown on the left, while those defined by the geodesic dis-
tance are shown on the right. In the 1-step case we can see how all the
descriptors are very similar if they come from the same mesh indepen-
dently from the kind of point that they represent, and also that the light
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blue and the red one are very close despite representing different points.
Differently, when descriptors are defined with our new diffusion pro-
cess the matching is correct. In particular, with our approach the per-
formance is independent from the change of the mesh. In regions with
similar density (ends of the wings) and in those with different density
(belly) the proposed approach provided reliable results. Note that this
behaviour is observed for both the chosen relation functions. This sug-
gests that the contribution to obtain the correct matching is given by the
proposed evolution process when higher order relations are considered.

6.2.6 Relation to Heat Kernel Signature

As mentioned in Subsection 6.2.1 our approach is related to existing
techniques based on diffusion process and in particular with the Heat
Kernel Signature. Moreover, in addition to the relation between our dis-
crete time process and continuous diffusion described in Subsection
6.2.4, another informative connection can be obtained by considering
the relation between the diffusion distance matrix [35] and the Heat Ker-
nel Signature [140]. Namely, as pointed out by Sun et al. [140], for a fixed
time parameter t :

HKSt (x) = 1

AM

∫
M

d 2
t (x, y)d y − HM (t )

AM

+ 2

AM

.

Note that the last two terms do not depend on the vertex, and there-
fore, will not influence distances between descriptors, when comparing
vertices on the same shape. In other words, the Heat Kernel Signature is
closely related to the eccentricity of the squared diffusion distance. This
means that for an appropriate discretization we can obtain:

HKSt = D f Ae,

using a matrix D f properly constructed in the following way:
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HKS DEPhks

Fig. 6.7: Comparison between 1-step approach (that is equivalent to HKS) and our dis-
crete time evolution version up to infinite (DEPhks). In the middle two human shapes
from FAUST dataset with four vertices highlighted in coloured balls. On the sides the 16-
dimensional descriptors: HKS descriptors (left) and DEPhks descriptors (right). Contin-
uous lines refer to the shape on the left, while dashed lines represent the shape on the
right.

D f (x, y) = 1

AM

d 2
t (x, y)+ 1

Ay N

( 2

AM

− HM (t )

AM

)
,

where N is the number of vertices in the surface discretization, and
AM = ∑

∀ j∈V Ay is the total area of the surface. This shows how the HKS
can be constructed marginalizing the rows of a matrix which represents
specific relations between pairs of points, as proposed in our framework.
The matrix D f contains the pairwise relations between points on the
surface encoded by the squared diffusion distance d 2

t . According to our
framework, this can be considered as special relation function of a 1-step
evolution process defined by Pe, with P = D f A, which demonstrates a
direct link between our approach and the HKS. Moreover, even though
the diffusion distance is itself obtained by considering an infinite set of
paths, by incorporating it into our framework and considering a discrete
evolution process, we can obtain more reliable and stable connections
between surface points, which further highlights the utility of our frame-
work.
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Figure 6.7 shows the improvement of our framework to the HKS de-
scriptors. We select 16 time scales and compute the respective 16 ma-
trices D f . A 16-dimensional HKS descriptor is computed for every se-
lected vertex as the 1-step on the matrix D f A (Figure 6.7 left). Then, on
the same matrices we compute the descriptors DEPhks related to our dis-
crete time evolution process framework (controlled by the relation func-
tion D f rather than the geodesic distances, Figure 6.7 right). As can be
seen, the 1-step descriptors on different points are not very discrimina-
tive. In particular the blue point is confused with the green point. Con-
versely, with our method the behaviour of DEPhks descriptors is more
coherent and the matching is correct.

6.3 Results

We have performed a wide range of experiments on several datasets to
demonstrate the utility of our DEP descriptor in two application scenar-
ios: i) point-to-point matching using nearest neighbor search in descrip-
tor space, ii) incorporating our approach into the functional maps frame-
work. In functional maps we also evaluate how our score operator could
improve the standard performances. Furthermore from these results we
analyze qualitatively the performance of our descriptor in comparison
with the widely used HKS and WKS. Finally we explore the behaviour of
our descriptor in different settings and varying the choice of parameters.

Point-to-Point Matching

In order to evaluate the ability of our DEP descriptor to associate cor-
responding points of different shapes we consider the following data
sources (for more details please refer to Section 2.5 in Chapter 2): FAUST
[13] a human shapes dataset with available ground truth point-wise cor-
respondence. We use the whole FAUST dataset (100 shapes), along with
additional shapes that have been edited by adding different types of
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noise. In addition we perform a test also using the more noisy real scans
of humans. CAESAR another human shapes dataset [121]. We use a ran-
dom selected subset of 21 shapes from the CAESAR-fitted meshes collec-
tion in which a template is fitted. For every shape we have around 6k ver-
tices with 1:1 ground-truth correspondence. KIDS [131] a human dataset
in which we find two different shape classes (kid and fat kid) in 16 differ-
ent poses. In our test we uniformly down sample to approximately 6k ver-
tices maintaining the 1:1 ground-truth correspondence and we can not
guarantee to maintain the same connectivity for all the meshes. MISC
dataset is composed of pairs of highly non-isometric shapes such as a
horse and an elephant. Manually generated ground truth point-wise cor-
respondences are available for a dense subset of points in this dataset.
See e.g., Figure 6.8 for examples of shapes from this dataset.

Fig. 6.8: Examples of shape from MISC dataset.

SHREC’11 Partial class benchmark [17]. The class includes one full hu-
man shape (i.e., the null shape) and 5 versions of its simulated transfor-
mations of pose deformation with strong partiality. These meshes were
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resampled to around 6K vertices. For every dataset we take all possible
pairs of shapes. Then we randomly select 1K vertices on one shape and
we compute the closest vertex in the descriptor space among all the ver-
tices from the second shape. For the MISC dataset, on the first shape
we use all the vertices for which the correct correspondence is given.
We evaluated the performance of our descriptor using the receiver op-
erator characteristic (ROC), already introduced in the previous Chapter.
We compared our method with the following descriptors:

− HKS [140] with 100 dimension.
− WKS [5] with 100 dimension.
− SHOT [144] with 320 dimension.
− AWFT [104] with 100 dimension.

We use the code and settings available on-line. In order to be coherent
with other methods our proposed descriptor is estimated at 100 scales
(DEP100). Note that HKS and WKS are the closest methods to ours as de-
scribed in Subsection 6.2.6. SHOT [144] is a local descriptor that encodes
very different information with respect to our method. AWFT [104], to
which is dedicated Section 5.3 of this thesis, also adopts a very different
approach to encode local information and it represents the state of the
art for point-to-point matching without the use of a learning procedure.
In Figure 6.9 we evaluate the performance of our DEP descriptor, in com-
parison with the other methods. We perform three different tests by vary-
ing the selected shapes: i) FAUST with all pairs from the entire dataset of
100 shapes (Figure 6.9 left), ii) FAUST-intra with only the pairs belonging
to the same subject (Figure 6.9 middle), and iii)FAUST-extra with only
pairs from two different subjects (Figure 6.9 right). Our method outper-
forms the competitors in all these settings. The greater improvement is
achieved in the FAUST extra where strong non-isometric deformations
are observed. Therefore, we claim that our descriptor is particularly ef-
fective in the case of change of subjects for which the isometric relation is
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Fig. 6.9: Performance evaluation on the pairs FAUST dataset, using all 100 shapes (left),
allowing only matching between shapes of the same subject (middle) and only between
shapes from different subject (right). Comparison with 4 different descriptors. Next to
the descriptor name, we show its dimensionality.
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Fig. 6.10: Performance evaluation on CAESAR dataset (left), KIDS dataset (middle) and
on the pairs Elephant and Elephant subsampled, Elephant and Horse subsampled, Alien
and Robot, Homer and Alien, Boy and Baby and Man (7 shapes), Gorilla (5 shapes), and
Woman (12 shapes) from MISC dataset (right). Comparison with 4 different descriptors.
Next to the descriptor name we shown its dimensionality.

Table 6.1: AUC of ROC curves

dataset HKS100 WKS100 SHOT320 AWFT100 DEP100

CAESAR 0.8069 0.9083 0.8034 0.9228 0.9762

KIDS 0.8210 0.8955 0.7279 0.8951 0.9449

MISC 0.6568 0.7227 0.6584 0.7513 0.8317

FAUST 0.8387 0.8736 0.7569 0.8946 0.9577

FAUST intra 0.9258 0.9176 0.7830 0.9163 0.9635

FAUST extra 0.8300 0.8692 0.7543 0.8924 0.9572

MEAN 0.8132 0.8645 0.7473 0.8788 0.9385

clearly violated. Figure 6.10 shows the pointwise matching evaluation on
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other benchmarks: i) CAESAR (Figure 6.10 left), KIDS (Figure 6.10 mid-
dle), and iii) MISC (Figure 6.10 right). In the human datasets (i.e., CESAR
and KIDS) the shapes are geometrically near-isometric although the nat-
ural articulated motion of humans and the change of the subject can lead
to possibly significant geodesic distortions. These kinds of distortion are
not as strong as in FAUST. On these datasets DEP clearly outperforms all
the competitors. In particular we exceed the performance of AWFT, the
most recent competitor in our analysis. The curves on the right are ob-
tained on the MISC dataset. On this dataset the point-to-point matching
is very difficult since the shapes are not related by an isometric transfor-
mation, and therefore methods that are very sensitive to non-isometric
changes are likely to fail. Moreover, in general the meshes have differ-
ent resolution and different connectivity. We evaluate the average per-
formance between all the pairs of shapes on the vertices for which the
correspondences are known. In this setting our method also clearly out-
performs all the other descriptors. As in the FAUST-extra in the presence
of more non-isometric deformations, that are characteristic to the MISC
dataset, the DEP descriptor increases its positive gap with all the com-
petitors. In order to give a numerical comparison of the performance, we
report the AUC (area under the curve) for every dataset in Table 6.1. Our
DEP descriptor showed superior performance over all the other methods
across all the datasets with improvements of at least 5% and on average
around 6%. In particular, our method is able to improve standard meth-
ods based on a diffusion geometry like HKS and WKS by confirming the
benefit of our alternative evolution process. Moreover, our DEP descrip-
tor is preferable to AWFT that to the best of our knowledge represents the
state of the art of descriptors without learning.

Functional Maps

The experiments above suggest that our descriptor can identify related
points across different shapes. Below we show how our general approach,
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which includes the discrete evolution process and the derived DEP de-
scriptor can be used to obtain entire maps across shapes. For this, we
use the functional map framework to which is dedicated Chapter 4 of
this thesis. As we have already seen to estimate this we can exploit i)
functional and ii) commutativity constraints. A functional constraint (i)
is defined from a set of corresponding descriptors. The commutativity
constraint (ii) is introduced by some commutative operator. In the orig-
inal setting i) is introduced by standard descriptors like HKS and WKS
and ii) is imposed by the Laplace-Beltrami Operator (LBO). A detailed
description can be found in Chapter 4.

The discrete time evolution process provides a new set of continuous
functions š, the score of our process for different selections of parameters
and a new shape operator Š. In the following experiments we propose to
inject our evolution process scheme into the functional map framework
by introducing our DEP descriptor for the functional constraint, and by
exploiting our regularized score operator Š as a commutative operator.

Dataset and Evaluation

We choose to perform our tests on FAUST because it is the largest datasets
and it contains more isometric and non-isometric variations. Moreover
as we have done in the point to point matching evaluation, we perform
three different tests on FAUST considering all the dataset, only the intra
subject pairs and finally restricting to pairs belonging to different sub-
jects.

All the following evaluations are obtained by randomly selecting 10
pairs of shapes from the 100 available in the dataset and we plot the av-
erage performances. The test on the entire dataset is obtained with 10%
of intra subject shapes and 90% of extra subject as happens in the whole
dataset. As in the original version we use a post processing step to the
obtained functional map based on a high-dimensional ICP, which also
results in a point-to-point map between shapes (see [115] for details).
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Fig. 6.11: Test varying the functional constraints functional maps framework. Visual-
ization of the error rates given an unnormalized radius r , the percentage y of the points
that are mapped by the correspondence at a distance at most r from their ground-truth
image.

We evaluate the performance using the correspondence quality charac-
teristic [76], previously introduced in Chapter 5, that is the standard eval-
uation used for functional maps. These curves show the percentage of
nearest-neighbor matches that are at most r -geodesically distant from
the ground truth correspondence. Here, we accept the symmetric im-
ages of ground truth correspondences, and use the minimum between
the distance from the matched point to the ground truth and its sym-
metric image, as done in prior work [115].

Functional constraints

Starting from [115] many works have tried to explore the quality and the
best method for the selection of the descriptor constraints to be used in
this framework (See [116] Chapter 2 for an overview). In [36], for example,
the authors compute optimal descriptor weights by learning the contri-
bution of each descriptor for the estimation of the overall matching. In
this experiment we adopt a new approach proposed recently in [111] that
is based on the enhancement of the descriptor preservation constraints.
In [111] the authors noticed that the original functional constraints [115]
do not capture all of the information contained on a given descriptor.
Rather than only preserving the descriptor values, as done before, they
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Fig. 6.12: Evaluation of a functional map on a pair of shapes from two different subjects
in the FAUST dataset. In the middle the evaluation curves for ground truth (GT) and the
comparison between WKS and DEP are shown. The colors on the left show points that
are matched better (red) or worse (blue) with DEP compared to WKS. On the right we
show on the second shape the transportations of a smooth function defined on the the
first shape, using GT, WKS or DEP.

have demonstrated that by preserving function products with descriptors
leads to a significant improvement in map quality, even in the presence
of a few descriptor functions. Moreover, the authors show how the result-
ing new constraints can be efficiently encoded via commutativity of the
unknown map with linear operators defined by the descriptors, which re-
tains the overall efficiency of the framework. Note that in addition to the
descriptors, in [115] and [111] authors proposed to add some consistent
segmentation of the shapes as functions to be preserved. Here we prefer
to use only descriptors in order to evaluate strictly their contribution to
the framework. We consider HKS100, WKS100 and our DEP100, and from
each of these we select 6 equally spaced scales as input descriptors. Ex-
plicitly we use the first, the last and all the scales that are multiples of 20,
in order to represent all the features contained in the whole collection. In
Figure 6.11 we show the performance of the functional maps framework
using the three different descriptors in the three different tests. As can be
seen the best performance on FAUST is obtained with DEP descriptors.
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In particular, on shapes for undergoing strong non-isometric deforma-
tions, our DEP descriptor (red line) clearly outperforms the competitors.
In the FAUST intra test, where the isometry is preserved we note that the
three descriptors achieve the same results. This experiment confirms the
utility of our descriptor for the computation of shape matching within
the functional map framework. In Figure 6.12 we show some details for
particular pairs of non isometric shapes. We compute functional maps
from the female shape on the left to the male shape on the right of this
figure. In the middle we plot the evaluation curves. DEP clearly outper-
forms WKS and is also very close to the ground truth (GT) performance.
On the shape on the left we plot the differences between the error of the
functional maps correspondences computed with WKS or DEP in the fol-
lowing way. If FWKS and FDEP are the functional maps computed using
WKS and DEP respectively, and GT is the ground truth map, then we can
define the function g at every vertex vi as:

g (vi ) = ‖(GT −FWKS)δvi‖−‖(GT −FDEP)δvi‖ ,

where δvi is the function equal 0 everywhere but equal to 1 in vi . The
norm ‖(GT −F )δvi‖ is a measure of the local error of transportation for
the functional map F in vi . Plotting this function g on the shape we have
that the Red area are the ones for which FDEP is more precise while in
Blue we can see where FWKS is better. More intense color corresponds
to greatest difference in performances. On the right we can see on the
second shape the transportations of a function defined on the the first
shape, using GT, WKS or DEP. Here, GT corresponds to the original func-
tion defined on the first shape. In comparison, the transported function
using DEP is similar to GT, unlike the one obtained using WKS.

Commutativity constraint

In Figure 6.13 we evaluate different commutativity constraints. In or-
der to give more emphasis to the contribution of the operators, here
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Fig. 6.13: Test varying the commutativity constraints functional maps framework. Vi-
sualization of the error rates given an unnormalized radius r , the percentage y of
the points that are mapped by the correspondence at a distance at most r from their
ground-truth image.
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Fig. 6.14: Evaluation of a functional map on a pair of shapes from two different subjects
in the FAUST dataset. In the middle the evaluation curves for ground truth (GT) and
the comparison between LBO and LBO+DEP are shown. The colors on the left show
points that are matched better (red) or worse (blue) with LBO+DEP. On the right we
show on the second shape the transportations of a smooth function defined on the the
first shape, using GT, LBO or LBO+DEP.

we use the standard functional constraint and the standard set of pre-
served functions (HKS and WKS), [115], without any pre-computed seg-
ment correspondences. We use i) our regularized score operator Š (DEP)
defined in Equation 6.13 ii) the Laplace Beltrami Operator (LBO) as in
the original version of functional map, and iii) the matrix of geodesic dis-
tances (DIS), as basic approach to introduce the geodesic information
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in this framework, as proposed in [2]. We also compare the performance
of each operator with the pairs (LBO+DIS) and (LBO+DEP). This way we
can see which operator based on geodesic distances adds more infor-
mation to the original LBO. As can be seen while in the FAUST-intra test
(Figure 6.13 middle) the improvement given by adding DEP to LBO is
not significant, the gap between LBO and LBO+DEP clearly grows in the
FAUST-extra test (Figure 6.13 right). This result confirms that in the dis-
crete time evolution process framework also the operator Š is more stable
with respect to non-isometric deformation.

As can be seen in Figure 6.13 the performance using DEP alone is very
close to the standard performance using only LBO. When DEP and LBO
are integrated the performance is definitely improved. Note also that
the quality of the maps obtained with (LBO+DEP) significantly exceeds
(LBO+DIS), confirming that our evolution process provides an effective
approach to further improve the contribution of geodesic distances in
this framework. In Figure 6.14 we show some details for a particular
pair of non isometric shapes. This figure contains the same analysis of
Figure 6.12, but we compare LBO and LBO+DEP in the Commutativity
constraint. In the middle we plot the evaluation curves. DEP clearly im-
proves the results of LBO and LBO+DEP is closer to the ground truth (GT)
performance. On the right we can see on the second shape, the trans-
portations of a function defined on the the first shape, using GT, LBO or
LBO+DEP respectively. These results show that adding DEP to LBO re-
sults in maps that are significantly better than those obtained using LBO
alone and that are very close to GT.

Evaluation on Real Scans dataset

We evaluate the proposed method on the full real scans dataset [13] fol-
lowing the settings reported on [30] . For this experiment to give a di-
rect comparison with [30] we evaluate our results using the correspon-
dence quality characteristic [76] with error measured in centimeters.
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Fig. 6.15: Cumulative error distribution on the FAUST real scan training dataset. The
results are an average on 50 pairs provided by [30], 50 for intra-subject (left) and 50 for
extra-subject (right). The matching is computed via distances in the descriptor space.
In black we show the performance of [30] for reference.

Figure 6.15 shows point to point matching results on 50 intra-subject
and 50 extra-subject pairs. We compare our DEP100 descriptor with [30]
and the 4 descriptors used in the point-to-point matching section, i.e.,
i) HKS100, ii) WKS100, iii) SHOT320 and iv) AWFT100. Note that as ex-
pected the method proposed in [30] shows the best performance. These
excellent results were indeed obtained by using an extrinsic alignment of
the shapes, which is not used by the other methods. On the other hand,
among the pure descriptor-based methods, our DEP descriptor outper-
forms all other alternatives and is comparable with most of the methods
evaluated in [30].

Qualitative Evaluation

In order to obtain a visual evaluation of the proposed approach we show
the dissimilarity maps of some pairs of shapes for some fixed points, as
done in Chapter 5 for the evaluation of others descriptors. For instance
in Figure 6.16 we fix a point on the Male shape in a first pose (the red
ball), and show its dissimilarity (i.e., the Euclidean distance on the de-
scriptor space) with all the points on the second pose of the Male shape.
The minimum of the dissimilarity for every descriptor is highlighted with
a white ball. The distances grow under varying from cold colors (simi-
larity) to warm colors (no similarity). It is clear that both HKS and WKS
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Null Shape HKS WKS DEP Null Shape HKS WKS DEP

Fig. 6.16: Visualization of dissimilarity maps. On the left a point is selected on the Man
shape in the first pose (left), and the dissimilarity maps on the Man shape in a different
pose for HKS, WKS and our method respectively from left to right. On the right a point
is selected on the Woman shape in the first pose (left), and the dissimilarity maps on
the Man shape in a different pose for HKS, WKS and our method respectively from left
to right.

Null Shape HKS WKS DEP

Fig. 6.17: Visualization of dissimilarity maps. The selected point on the Horse shape
(left), and the dissimilarity maps on the Elephant shape for HKS, WKS and our method
respectively from left to right.

methods are not able to localize the selected point, and the white ball
is far from the target point. Conversely, our method gives more local re-
sult and identifies the correct corresponding point. Gradually losing the
isometry property between the shapes the robustness of our method is
highlighted. This is shown on the right in Figure 6.16 for Female and Male
subjects from FAUST dataset, in Figure 6.17 for Horse and Elephant from
MISC and on the left in Figure 6.18 for Robot and Alien from MISC. In
particular in the last two pairs from MISC the two shapes are clearly non-
isometric and their meshes are totally different in the number of vertices
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Fig. 6.18: Visualization of dissimilarity maps. On the left the selected point on the Robot
shape (left), and the dissimilarity maps on the Alien shape in a different pose for HKS,
WKS and our method respectively from left to right. On the right the selected point on
the scanned Woman shape (left), and the dissimilarity maps on the scanned Man shape
for HKS, WKS and our method respectively from left to right.

and connections. We perform the same test using a pair of real scans
from FAUST dataset to evaluate the robustness of the proposed method
against noise and missing parts. Real scans have more than 160K vertices
and the number of vertices is different for different scans. These high-
resolution, triangulated, non-watertight meshes present a lot of chal-
lenging features. Also in this case our descriptor correctly identifies a lo-
cal region of points on the shape without spurious areas as in the HKS
and WKS results as we show on the right of Figure 6.18. A similar evalu-
ation analysis is shown in Figure 6.19 for testing the robustness of pro-
posed descriptor against strong subsampling and topological noise (i.e.,
glued fingers and missing parts). This experiment is carried out on a
small collection of shapes from the FAUST dataset with different poses
of the same subject and different subjects with several kinds of noise
(see the caption of Figure 6.19 for an exhaustive list). We observe that
our DEP descriptor is robust to smoothing, subsampling and topologi-
cal noise and shows better localization and accuracy than other meth-
ods. We also evaluate the robustness of our DEP for partial and broken
parts from the SHREC’11 benchmark. Note that spectral methods such
as HKS and WKS are known to be sensitive to this kind of failure, since the
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Fig. 6.19: Visualization of the dissimilarity maps for shapes with different kinds of
noise. The vertex on the right knee of the clean shape on the left is selected, and the
dissimilarity maps on shapes with different kind of noise are shown. In the first row for
HKS, in the second row for WKS and finally for our method. Respectively from left to
right the original shape, an isometric remeshing, two smoothed versions of the surface,
a subsampled mesh with 1000 vertices, topological noise (glued fingers) and the last
three are partial views or surfaces with missing parts.

Laplace operator changes its spectral representation. Figure 6.20 shows
the dissimilarity maps for some selected points for different partial mod-
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DEPWKSHKSNull Shape

Fig. 6.20: Visualization of the dissimilarity maps for partial matching. The selected
points on the null shape, and the dissimilarity maps on different partial models for HKS,
WKS and our method respectively from left to right.
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Fig. 6.21: Performance evaluation on FAUST dataset (test for 10 different poses of 2
different subjects) in different settings. From left to right: comparison with different
methods to encode geodesic distances (left), comparison starting from different ini-
tial information matrices (middle), comparison starting from different computations
of geodesic distances and regularizations (right).

els. We note that HKS is very sensitive to this kind of shape alteration and
it highlighted in general wrong areas. WKS performed clearly better but
it resulted in several ambiguous parts. Differently, our method is robust
in all the selected experiments.

Comparison of parameters choices in different settings

Finally, to highlight the flexibility of the proposed framework, we evalu-
ate the performance of point to point matching across a range of param-
eter choices: i) different approaches to encode the geodesic distance, ii)
different relation functions, iii) different choice of regularization values.
In Figure 6.21 we show a set of such evaluations. In order to access the
role of geodesic distance and the importance of higher order relations
we consider five methods to encode the information contained in the
matrix D:

− Basic geodesic distance (D16). We use the matrix D introduced in Sec-
tion 6.2.5 as process operator and perform 1-step of our evolution pro-
cess with f0 = e. Note that in this case the contribution of the areas A
is not considered.

− 1-step (1-step16). As described in Section 6.2.5 we consider only the
first order relation (i.e., 1-step of the evolution process with f0 = e).
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− Average Geodesic Distance (AGD16). According to the method intro-
duced in [60], we compute the average geodesic distances for every
point at each scale as descriptor. Note that in AGD the areas are con-
sidered and differently from 1-step16 a more effective normalization
method is introduced (see [60] for more details).

− The 1−ring version of our method (DEP1ring). For every vertex we
compute the geodesic distances to each point in the 1−ring (i.e., the
length of the edge). Different scales of this descriptor are then ob-
tained using 16 different values of the regularization parameter for
r ∈ (0, 1).

− Our descriptor (DEP16). We evaluate our descriptor as described in
6.2.5 with f0 = e. In this case the higher order relations are considered
by evaluating the evolution process up to infinite.

We fix 16 different scales δ ∈ [0,1] in order to obtain for every method a
16−dimensional descriptor as defined in Section 6.2.5, with exception of
the DEP1ring method. Figure 6.21 on the left shows the performance of
the considered approaches. As expected when the geodesic distance is
not combined with the areas (D16) the performance are the worst. In the
same way starting only from the 1 ring information the obtained descrip-
tor does not perform well. This construction is indeed strongly related to
the mesh, and is not stable under near-isometric or non-isometric de-
formations. Moreover, we confirm with a more exhaustive evaluation the
benefit of higher order relations discussed in Section 6.2.5. In particular,
our method (DEP16) clearly outperforms both 1-step16 and AGD16.
As second setting we evaluate the evolution process by defining different
relation functions:

− Diffusion distance (DEPdiff16). The relation function is defined as in
Section 6.2.5 where the normalized diffusion distance is used instead
of the geodesic distance.
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− HKS from diffusion distance (DEPhks16). The relation function is de-
fined by the matrix D f as proposed in Section 6.2.6 where the HKS is
derived from the diffusion distance.

− Relation from other descriptor 1 (DEP16wks16). In this case a differ-
ent approach is exploited. We compute a generic descriptor for each
vertex, namely the WKS. We define as relation function the Euclidean
distance on the descriptor space.

− Relation from other descriptor 2 (DEP100wks16). The same as the
previous one but the WKS descriptor is 100−dimensional rather than
16−dimensional.

− Our descriptor (DEP16). The relation function is defined starting from
the geodesic distance as described in Section 6.2.5.

We fix 16 different scales δ ∈ [0,1] in order to obtain for every method a
multi-scale descriptor with the same dimensionality. In more details, in
DEPdiff16 we fix a time value for each scale and compute the descriptor
using the normalization procedure described in Section 6.2.5. For DE-
Phks16 we use the 16 matrices D f (using 16 different time scales). Fi-
nally DEP16wks16 and DEP100wks16 are obtained as described in Sec-
tion 6.2.5 where the normalized Euclidean distance among descriptors is
used instead of Ĝ . For all the considered relation functions we compute
the evolution process and the evolution score by obtaining different ver-
sions of the DEP descriptor. To complete the evaluation we add in the
comparison DEP100, HKS16, WKS16, and WKS100. Figure 6.21 middle,
shows the results. As above, this test also highlights the importance of
the higher order relations captured using our discrete evolution process.
In particular, it is interesting to observe how DEPhks16 (which employs
our evolution process on the same relation function that generates the
HKS at 1-step as explained in Section 6.2.6) clearly outperforms HKS16.
Moreover, even if WKS16 performs better than DEP16wks16 we observe
that DEP100wks16 is comparable with WKS100 showing that our DEP
approach is able to obtain the same performance but with a much lower
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dimensional descriptor (from 100- to 16-dimensional). Overall, our DEP
descriptor based on geodesic distance (DEP16) achieves the best perfor-
mance. Conversely, the use of diffusion distance (DEPdiff16) seems not
convincing. From this test we conclude that the best choice for the re-
lation function is derived from the geodesic distance as in our DEP de-
scriptor, even if the other choices have confirmed the effectiveness of our
evolution process scheme. Finally, we evaluate the dependence of the
proposed method on the regularization parameter. In Figure 6.21 on the
right we compute DEP descriptors with three different values of c ∈ (0,1)
in the computation of the parameter r as described in Section 6.2.5. The
choice of c gives different weights to the paths with a large number of
steps (and vice versa). We evaluate c = 0.1, c = 0.5 and c = 0.9. Note that
the performances are very similar suggesting that the best choice of c
can be estimated with respect to the task at hand. In general the choice
c = 0.1 consistently gives good and stable performance and therefore we
fix this value throughout our experiments. Finally, in Figure 6.21 on the
right we also evaluate the performance of our descriptor by computing
the geodesic distance on surface using different methods. Namely, we
compare Dijkstra algorithm (di) [105], fast marching (fm) [77] and exact
geodesic (eg) [141]. As can be seen on the right of Figure 6.21, the per-
formance is similar across different choices, and for computational effi-
ciency we use Dijkstra’s algorithm in the following experiments.

Complexity

The complexity of our method is dominated by computing and storing
the pairwise geodesic distance matrix G . In practice, we use Dijkstra’s al-
gorithm to approximate the geodesic distances on a triangle mesh. By
using a straightforward non-optimized implementation, our method re-
quired, on average, on a triangle mesh with around 7000 vertices, just
over 10 minutes to compute the descriptors of all points across a range
of 100 scales and just over 1 minute across a range of 16 scales, on a ma-
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chine with 8GB of RAM using an Intel 2,6 GHz Core i7 processor. HKS
and WKS take a few seconds on the same machine.

6.4 Locality in discrete time evolution process and take

home message

In this last Section we want briefly explore the use of discrete time evo-
lution process for representing a single point on a surface. This Section
could be seen as an extension of the paper [103], or as an introduction to
possible future work related to the same paper.
Instead of considering as starting state a constant distribution on the sur-
face f0 = e as done in the previous Section, here we fix the starting state
as a delta in a point on the surface; in this case we can write f0 = δx , for
a given x ∈M . With this choice f0(x) = 1 and f0 is equal to 0 everywhere
else. Now if we apply the DEP framework to this starting state we obtain
the discrete time evolution process of the point x represented as a delta
function. Also this starting state has a clear connection with heat diffu-
sion. Indeed, as we have seen in Chapter 3, for every y ∈M and for every
time t ∈ R, the heat kernel ht (x, y) represents the amount of heat which
is transferred from x to y in the time t , starting with the initial heat distri-
bution δx . This connection allows us to compare how the heat kernel and
our discrete time evolution process represent a point x in different scales
of time for the heat diffusion, and of localization for DEP. In Figure 6.22
we compare these two different process on two human shapes. Each row
of the Figure 6.22 is dedicated to a different shape. The shape on the sec-
ond row has glued hands as a topology error. For both process the initial
state is equal to a delta function in the point x on the left shoulder of the
shapes that is highlighted with a small white sphere. The five shapes on
the left represent the heat diffusion process for five different increasing
scales of time. While the five shapes on the right represent the discrete
time evolution process for five different decreasing scales of localization.



201

We rescale all the diffusion states shown in the interval [0,1] for visual-
ization. Comparing the DEP with the heat kernel we notice two aspects
for which DEP is better. First the localization. As can be seen the heat
kernel is initially well localized around the point at least the first shape
on the left. As time scale goes on the localization is lost, and the heat is
globally diffused on the shape. Looking at DEP, as the localization scale
decreases the size of the considered neighborhood increases but the lo-
calization remains centered at the fixed point. Second the stability with
respect to the topology error. For the heat kernel comparing the first and
the second rows it is clear that the third and fourth shapes are different,
in the diffusion on the arm opposite to the point. DEP seems more sta-
ble with respect to the variation in the topology, although in the fourth
and fifth shapes there are some small changes. This motivates the analy-
sis of the use of DEP to solve problems related to topological variations.
This could be the idea for a future work based on DEP. In this Chapter
we introduced the discrete time evolution process, an alternative evolu-
tion paradigm defined on surfaces. Our process is based on a pairwise
relation defined o the surface. We start describing a point as the set of its
neighborhoods as depicted in Figure 6.1. These initial informations can
be seen as a local representation of the point in different scales of locality.
The discrete time evolution process and its iterative procedure allows us
to explore the relation between a point and the entire shape starting from
an initial local relation. In this spirit the discrete time evolution process
encode a global representation of the points starting from a local charac-
terization. The discrete time evolution process can be thus view as a tool
for a from local to global description of the surface.
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Fig. 6.22: Comparison between heat diffusion and discrete time evolution process. The
comparison is performed on two surfaces, one for each row. These shapes are different
poses of the same subject, with topology error (glued hands) on the shape on the second
row. A point on the shapes is selected, the same on both shapes, on the left shoulder
of the shapes and it is highlighted with a small white sphere. On the left we show the
heat diffusion from a heat source concentrated in the point for different time scales. On
the right, starting from the indicator function of the point as initial state, we show the
discrete time evolution process For different localization scales.



7

Conclusion

In this thesis we observed how the localized approaches could improve
many applications in the geometry processing field. Our main focus is
on localized analysis for point based-description of surfaces, looking at
how a pointwise characterization and description of shapes can help in
many applications and problems.
We describe how to extend local signal processing tools such as the win-
dowed Fourier transform to 2-dimensional surfaces embedded in R3. We
propose a new family of localized basis for spectral geometry process-
ing that allows us to obtain a good spectral localization together with a
good spatial localization and increase the representation of signals de-
fined on manifolds. We also introduce the discrete time evolution pro-
cess as a non spectral alternative to localized analysis of surfaces and to
standard diffusion process.
The proposed methods could be analyzed under different points of view.

− Spectral and non-spectral method. We can distinguish the methods ac-
cording to whether the spectrum of the shapes is involved or not. This
is the difference between the localizations proposed in Chapter 5 and
the one proposed in Chapter 6.

− The domain of the localization. This domain could be spectral as in the
case of the WFT and AWFT methods, where a spectral window g is de-
fined through its Fourier coefficients. The localization domain could
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be spatial as it is for LMH where the localization is obtained fixing a
region on the surface.

− The direction of localization. We can move from global to local as done
in WFT, AWFT and LMH methods, imposing locality to the global spec-
tral analysis. Conversely we can start from local information and ob-
tain a global or a less local description of the shape, as done in DEP
descriptor. From local pairwise relation to a final score that encodes
properties of the entire shape. In the same way in the brain classifica-
tion work we start from local descriptors and we obtain a global clas-
sification of the shapes.

Our practical contributions are many and derive from the application
of the proposed methods to problems such as point-to-point matching,
salient point detection, shape segmentation, shape classification and
shape correspondence in different settings.
The obtained results give arise to many future directions. First we could
try to modify the functional kernel proposed in Chapter 4 in order to ob-
tain a kernel that is less sensitive to local extrinsic variations improving
the detection of more substantial morphological abnormalities associ-
ated with the analyzed disease. This can be done adopting other types of
descriptors, for example extrinsic descriptors, in the optimization of the
map. Another possible extension of the functional map for brain classifi-
cation method could be to analyze more in details the deformations that
identify the abnormalities. Adding to the classification already obtained
a localization of the main deformation. The functional kernel could be
also profitably exploited in other applications such as shape retrieval.
With the WFT and the AWFT it is possible to investigate new applications
such as 2D or 3D texture classification, analyzing with these tools func-
tions as curvatures, gradients and others that could characterize these
textures. Some investments could be made in the direction of defining
more Gabor like instruments, of which AWFT is only a first attempt.
The general LMH basis can be improved in different applications with a
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task specific and unsupervised definition of the regions on which local-
ize the basis functions. A possible application of this work could be the
transfer of regions for which the standard MH are not optimal. New in-
teresting directions can be also to consider the localization of the eigen-
functions of other operators. LMH could be also seen as a possible new
solution for the localized spectral analysis that we face with WFT and
AWFT. We can fix a definition for the neighbour of each point, then local-
ize in this neighbour the LMH and use the computed function in order
to obtain the localized spectral representation of the selected point.
Finally as we shown DEP analysis can be extended to more general func-
tions and not only to the constant functions as done in this thesis. Simi-
larly, other pairwise relations can be considered instead of geodesic dis-
tances. Probably some spectral pairwise relations can be adopted instead
of the geodesic distances, speeding up computationally the method and
improving the intrinsic properties encoded by DEP. The DEP descriptor
does not exhaust the analysis of the paths on surfaces. Other kinds of
analysis widely used for graphs could be adopted on surfaces with possi-
ble practical results.
We hope that the tools proposed in this thesis could be used, reinforced
and developed by the geometry processing community, and that local-
ization could generate new solutions and promote much innovative re-
search in this field.
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