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Abstract. In an era where accumulating data is easy and storing it inexpensive,
feature selection plays a central role in helping to reduce the high-dimensionality
of huge amounts of otherwise meaningless data. In this paper, we propose a
graph-based method for feature selection that ranks features by identifying the
most important ones into arbitrary set of cues. Mapping the problem on an affinity
graph - where features are the nodes - the solution is given by assessing the im-
portance of nodes through some indicators of centrality, in particular, the Eigen-
vector Centrality (EC). The gist of EC is to estimate the importance of a feature
as a function of the importance of its neighbors. Ranking central nodes individu-
ates candidate features, which turn out to be effective from a classification point
of view, as proved by a thoroughly experimental section. Our approach has been
tested on 7 diverse datasets from recent literature (e.g., biological data, object
recognition, among others), and compared against filter, embedded, and wrap-
pers methods. The results are remarkable in terms of accuracy, stability and low
execution time.
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1 Introduction
As data collection technologies advance and computer power grows, a torrent of data
is generated in almost every field computers are used [4]. Because the volume, veloc-
ity, variety and complexity of datasets is continuously increasing, pattern recognition
methodologies have become indispensable in order to extract useful information from
huge amounts of otherwise meaningless data.

Feature Selection (FS) is one of the long existing methods that deal with these prob-
lems [13]. Its objective is to select a minimal subset of those attributes that allow a
problem to be clearly defined. By choosing a minimal subset of features, irrelevant and
redundant features are removed according to some reasonable criteria so that the origi-
nal task can be achieved equally well, if not better. FS techniques can be partitioned into
three classes [13]: wrappers, which use classifiers to score a given subset of features;
embedded methods, which inject the selection process into the learning of the classi-
fier; filter methods, which analyze intrinsic properties of data, ignoring the classifier.
Most of these methods can perform two operations, ranking and subset selection: in
the former, the importance of each individual feature is evaluated, usually by neglect-
ing potential interactions among the elements of the joint set [7]; in the latter, the final
subset of features to be selected is provided. In some cases, these two operations are
performed sequentially (first the ranking, then the selection) [6,11,16,22,31]; in other
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cases, only the selection is carried out [12]. Usually, the subset selection is supervised,
while in the ranking case, methods can be supervised or not. FS is NP-hard [13]; if
there are n features in total, the goal is to select the optimal subset of m�n, by eval-
uating

(
n
m

)
combinations; therefore, suboptimal search strategies are considered (see

Section 2 ). With the filters, features are first considered individually, ranked, and then
a subset is extracted, some examples are Mutual Information [31], Relief-F [22], and
mRMR [24]. Conversely, with wrapper and embedded methods, subsets of features are
sampled, evaluated, and finally kept as the final output, for instance, FSV [6,11] and
SVM-RFE [16].

In this work, we propose a novel graph-based feature selection algorithm that ranks
features according to a graph centrality measure (Eigenvector centrality [5]). The main
idea behind the method is to map the problem to an affinity graph, and to model pairwise
relationships among feature distributions by weighting the edges connecting them.

The novelty of the proposed method in terms of the state of the art is that it assigns
a score of “importance” to each feature by taking into account all the other features
mapped as nodes on the graph, bypassing the combinatorial problem in a methodolog-
ically sound fashion. Indeed, eigenvector centrality differs from other measurements
(e.g., degree centrality) since a node - feature - receiving many links does not neces-
sarily have a high eigenvector centrality. The reason is that not all nodes are equiva-
lent, some are more relevant than others, and, reasonably, endorsements from important
nodes count more (see Section 3.2 ). Noteworthy, another important contribution of this
work is the scalability of the method. Indeed, centrality measurements can be imple-
mented using the Map Reduce paradigm [18,21,30], which makes the algorithm prone
to a possible distributed version [26].

Our approach is extensively tested on 7 benchmarks of cancer classification and
prediction on genetic data (Colon [2], Prostate [10], Leukemia [10],Lymphoma [10]),
handwritten recognition (GINA [1]), generic feature selection (MADELON [14]), and
object recognition (PASCAL VOC 2007 [8]). We compare the proposed method on
these datasets, against seven comparative approaches, under different conditions (num-
ber of features selected and number of training samples considered), overcoming all of
them in terms of ranking stability and classification accuracy.

The paper is organized as follows. A brief overview of the related literature is
given in Section 2, mostly focusing on the comparative approaches we consider in this
work. Our feature selection algorithm is described in Section 3. Graph Construction and
weighting are presented in Section 3.1 and Section 3.2 respectively, while the employed
Eigenvector centrality is discussed in Section 3.3. Section 4 contains the experimental
evaluations and results. Finally, conclusions are provided in Section 5.

2 Related Literature

Among the most used FS strategies, Relief-F [22] is an iterative, randomized, and su-
pervised approach that estimates the quality of the features according to how well their
values differentiate data samples that are near to each other; it does not discriminate
among redundant features, and performance decreases with few data. Similar problems
affect SVM-RFE (RFE) [16], which is an embedded method that selects features in a
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sequential, backward elimination manner, ranking high a feature if it strongly separates
the samples by means of a linear SVM.

An effective yet fast filter method is the Fisher method [12], it computes a score
for a feature as the ratio of interclass separation and intraclass variance, where features
are evaluated independently, and the final feature selection occurs by aggregating the
m top ranked ones. Other widely used filters are based on mutual information, dubbed
MI here [31], which considers as a selection criterion the mutual information between
the distribution of the values of a given feature and the membership to a particular
class; Even in the last case, features are evaluated independently, and the final feature
selection occurs by aggregating the m top ranked ones.

Selecting features in unsupervised learning scenarios is a much harder problem,
due to the absence of class labels that would guide the search for relevant information.
In this scenario, we compare our approach against the recent unsupervised graph-based
filter dubbed Inf-FS [27]. In the Inf-FS formulation, each feature is a node in the graph, a
path is a selection of features, and the higher the centrality score, the most important (or
most different) the feature. It assigns a score of “importance” to each feature by taking
into account all the possible feature subsets as paths on a graph. Another unsupervised
method is the Laplacian Score (LS) [17], where the importance of a feature is evaluated
by its power of locality preserving. In order to model the local geometric structure,
this method constructs a nearest neighbor graph. LS algorithm seeks those features that
respect this graph structure.

Finally, for the wrapper method, we include the feature selection via concave mini-
mization (FSV) [6], where the selection process is injected into the training of an SVM
by a linear programming technique.

3 Proposed Method

3.1 Building the Graph

Given a set of features X = {x(1), ..., x(n)} we build an undirected graph G = (V,E);
where V is the set of vertices corresponding, one by one, to each variable x. E codifies
(weighted) edges among features. Let the adjacency matrix A associated with G define
the nature of the weighted edges: each element aij of A, 1 ≤ i, j ≤ n, represents a
pairwise potential term. Potentials can be represented as a binary function ϕ(x(i), x(j))
of the nodes x(k) such as:

aij = ϕ(x(i), x(j)). (1)

The graph can be weighted according to different heuristics, therefore the function
ϕ can be handcrafted or automatically learned from data.

3.2 ϕ-Design

The design of the ϕ function is a crucial operation. In this work, we weight the graph
according to good reasonable criteria, related to class separation, so as to address the
classification problem. In other words, we want to rank features according to how well
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they discriminate between two classes. Hence, we draw upon best-practice in FS and
propose an ensemble of two different measures capturing both relevance (supervised)
and redundancy (unsupervised) proposing a kernelized-based adjacency matrix. Before
continuing with the discussion, note that each feature distribution x(i) is normalized so
as to sum to 1.

Firstly, we apply the Fisher criterion:

fi =
|µi,1 − µi,2|2

σ2
i,1 + σ2

i,2

,

where µi,C and σi,C are the mean and standard deviation, respectively, assumed by the
i-th feature when considering the samples of the C-th class. The higher fi, the more
discriminative the i-th feature.

Because we are given class labels, it is natural that we want to keep only the features
that are related to or lead to these classes. Therefore, we use mutual information to
obtain a good feature ranking that score high features highly predictive of the class.

mi =
∑
y∈Y

∑
z∈x(i)

p(z, y)log
( p(z, y)

p(z)p(y)

)
,

where Y is the set of class labels, and p(·, ·) the joint probability distribution.
A kernel k is then obtained by the matrix product

k = (f ·m>),

where f and m are n × 1 column vectors normalized in the range 0 to 1, and k results
in a n× n matrix.

To boost the performance, we introduce a second feature-evaluation metric based
on standard deviation [16] – capturing the amount of variation or dispersion of features
from average – as follows:

Σ(i, j) = max
(
σ(i), σ(j)

)
,

where σ being the standard deviation over the samples of x, and Σ turns out to be a
n× n matrix with values ∈ [0,1].

Finally, the adjacency matrix A of the graph G is given by

A = αk + (1− α)Σ, (2)

where α is a loading coefficient ∈ [0, 1]. The generic entry aij accounts for how much
discriminative are the feature i and j when they are jointly considered; at the same time,
aij can be considered as a weight of the edge connecting the nodes i and j of a graph,
where the i-th node models the i-th feature distribution.

3.3 Eigenvector Centrality

From a graph theory perspective identifying the most important nodes corresponds to
individuate some indicators of centrality within a graph (e.g., the relative importance of
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nodes). A first way used in graph theory is to study accessibility of nodes, see [9,25]
for example. The idea is to compute Al for some suitably large l (often the diameter of
the graph), and then use the row sums of its entries as a measure of accessibility (i.e.
scores(i) = [Ale]i, where e is a vector with all entries equal to 1). The accessibility
index of node i would thus be the sum of the entries in the i-th row of Al, and this is
the total number of paths of length l (allowing stopovers) from node i to all nodes in
the graph. One problem with this method is that the integer l seems arbitrary. However,
as we count longer and longer paths, this measure of accessibility converges to a index
known as eigenvector centrality measure (EC) [5].

The basic idea behind the EC is to calculate v0 the eigenvector ofA associated to the
largest eigenvalue. Its values are representative of how strongly each node is connected
to the other nodes. Since the limit of Al as l approaches a large positive number L
converges to v0,

lim
l→L

[Ale] = v0, (3)

the EC index makes the estimation of indicators of centrality free of manual tuning over
l, and computationally efficient.

Let us consider a vector, for example e, that is not orthogonal to the principal vector
v0 of A. It is always possible to decompose e using the eigenvectors as basis with a
coefficient β0 6= 0 for v0. Hence:

e = β0v0 + β1v1 + . . .+ βnvn, (β0 6= 0). (4)

Then

Ae = A(β0v0 + β1v1 + . . .+ βnvn) = β0Av0 + β1Av1 + . . .+ βnAvn =

= β0λ0v0 + β1λ1v1 + . . .+ βnλnvn.
(5)

So in the same way:

Ale = Al(β0v0 + β1v1 + . . .+ βnvn) = β0A
lv0 + β1A

lv1 + . . .+ βnA
lvn =

= β0λ
l
0v0 + β1λ

l
1v1 + . . .+ βnλ

l
nvn, (β0 6= 0).

(6)

Finally we divide by the constant λl0 6= 0 (see Perron-Frobenius theorem [23]),

Ale
λl0

= β0v0 +
λl1β1v1
λl0

+ . . .+
λlnβnvn
λl0

, (β0 6= 0). (7)

The limit of Ale
λl
0

as l approaches infinity equals β0v0 since liml→∞
λl
1

λl
0

= 0, ∀l >
0. What we see here is that as we let l increase, the ratio of the components of Ale
converges to v0. Therefore, marginalizing over the columns of Al, with a sufficiently
large l, corresponds to calculate the principal eigenvector of matrix A [5]. Figure 1
illustrates a toy example of three random planar graphs. Graphs are made of 700 nodes
and they are weighted by the Euclidean distance between each pair of points. In the
example, high scoring nodes are those ones farther from the mean (i.e., the distance is
conceived as quantity to maximize), the peculiarity of the eigenvector centrality is that
a node is important if it is linked to by other important nodes (higher scores).
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Fig. 1. Eigenvector centrality plots for three random planar graphs. On the left, a simple Gaussian
distribution where central nodes are at the peripheral part of the distribution as expected. The
central and right plots, some more complicated distributions, a node receiving many links does
not necessarily have a high eigenvector centrality.

Name # samples # classes # feat. few train unbal. (+/-) overlap noise shift
GINA [1] 3153 2 970 X
MADELON [15] 4.4K 2 500 X
Colon [2] 62 2 2K X (40/22) X
Lymphoma [10] 45 2 4026 X (23/22)
Prostate [29] 102 2 6034 X (50/52)
Leukemia [10] 72 2 7129 X (47/25) X X
VOC 2007 [8] 10K 20 n.s. X X

Table 1. Panorama of the used datasets, together with the challenges for the FS scenario, and the
state of the art so far. The abbreviation n.s. stands for not specified (for example, in the object
recognition datasets, the features are not given in advance).

To the aim of this work, the use of eigenvector centrality allows to individuate can-
didate features, which turn out to be effective from a classification point of view, since
indicators of centrality characterize the global (as opposed to local) prominence of a
feature in the graph. Summarizing, the gist of eigenvector centrality is to compute the
centrality of a node as a function of the centralities of its neighbors.

4 Experiments and Results

4.1 Datasets and Comparative Approaches

Datasets are chosen for letting the proposed method deal with diverse FS scenarios, as
shown on Table 1. In the details, we consider the problems of dealing with few training
samples and many features (few train in the table), unbalanced classes (unbalanced),
or classes that severely overlap (overlap), or whose samples are noisy (noise) due to:
a) complex scenes where the object to be classified is located (as in the VOC series)
or b) many outliers (as in the genetic datasets, where samples are often contaminated,
that is, artefacts are injected into the data during the creation of the samples). Lastly
we consider the shift problem, where the samples used for the test are not congruent
(coming from the same experimental conditions) with the training data.

Table 2 lists the methods in comparison, whose details can be found in Sec. 2. Here
we just note their type, that is, f = filters, w = wrappers, e = embedded methods, and
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Acronym Type Cl. Compl.
Fisher [12] f s O(Tn)
FSV [6,11] w s N/A
Inf-FS [27] f u O(n2.37(1 + T ))
MI [31] f s ∼ O(n2T 2)
LS [17] f u N/A
Relief-F [22] f s O(iTnC)
RFE [16] e s O(T 2nlog2n)
Ours f s O(Tn+ n2)

Table 2. List of the FS approaches considered in the experiments, specified according to their
Type, class (Cl.), and complexity (Compl.). As for the complexity, T is the number of samples, n
is the number of initial features,K is a multiplicative constant, i is the number of iterations in the
case of iterative algorithms, and C is the number of classes. N/A indicates that the computational
complexity is not specified in the reference paper.

their class, that is, s = supervised or u = unsupervised (using or not using the labels
associated with the training samples in the ranking operation). Additionally, we report
their computational complexity (if it is documented in the literature). The computational
complexity of our approach is O(Tn+ n2). The term Tn is due to the computation of
the mean values among the T samples of every feature (n). The n2 concerns the con-
struction of the matrix A. As for the computation of the leading eigenvector, it costs
O(m2n), where m is a number much smaller than n that is selected within the algo-
rithm [20]. In the case that the algorithm can not be executed on a single computer, we
refer the reader to [18,21,26,30] for distributed algorithms.

4.2 Exp. 1: Deep Representation (CNN) with pre-training

This section proposes a set of tests on the PASCAL VOC-2007 [8] dataset. In object
recognition VOC-2007 is a suitable tool for testing models, therefore, we use it as refer-
ence benchmark to assess the strengths and weaknesses of using our approach regarding
the classification task. For this reason, we compare our approach against 8 state-of-the-
art FS methods reported in Table 2. This experiment considers as features the cues
extracted with a deep convolutional neural network architecture (CNN). We selected
the pre-trained model called very deep ConvNets [28], which performs favorably to
the state of the art for classification and detection in the ImageNet Large-Scale Vi-
sual Recognition Challenge 2014 (ILSVRC). We use the 4,096-dimension activations
of the last layer as image descriptors (i.e., 4,096 features in total). The VOC-2007 edi-
tion contains about 10,000 images split into train, validation, and test sets, and labeled
with twenty object classes. A one-vs-rest SVM classifier for each class is learnt (where
cross-validation is used to find the best parameter C and α mixing coefficient in Eq. 2
on the training data) and evaluated independently and the performance is measured as
mean Average Precision (mAP) across all classes.

Table 3 serves to analyze and empirically clarify how well important features are
ranked high by several FS algorithms. The amount of features used for the two experi-
ments is very low: ≈3% and ≈6% of the total. The results are significant: our method
achieved the best performance in terms of mean average precision (mAP) followed by
the unsupervised filter methods LS and Inf-FS. As for the methods in comparison, one
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PASCAL VOC 2007
First 128/4096 Features Selected First 256/4096 Features Selected

Fisher FSV Inf-FS LS MI ReliefF RFE Ours Fisher FSV Inf-FS LS MI ReliefF RFE Ours

52.43 87.90 88.96 89.37 12.84 57.20 86.42 88.09 82.65 90.22 91.16 90.94 73.51 81.67 88.17 90.79

13.49 80.74 80.43 80.56 13.49 49.10 82.14 80.94 83.21 80.07 83.36 84.21 75.04 71.27 83.30 84.72

85.46 86.77 87.04 86.96 80.91 75.42 83.16 88.74 89.14 86.15 88.88 89.31 85.48 83.54 86.12 89.15

79.04 83.58 85.31 83.51 61.50 63.75 78.55 86.90 87.05 80.68 87.24 87.84 75.25 73.30 86.13 87.42

46.61 39.80 44.83 49.36 35.39 18.33 46.24 47.37 52.54 49.00 52.65 49.44 48.94 35.67 47.28 53.20

12.29 72.89 76.69 76.98 12.29 31.54 74.68 76.27 77.32 78.69 79.23 79.97 59.23 63.83 79.38 80.57

82.09 78.61 85.78 85.82 63.58 74.95 83.94 85.92 85.86 84.01 86.74 87.06 85.27 82.76 85.61 86.56

75.29 82.25 83.34 81.81 40.96 66.95 81.02 83.29 83.46 83.49 85.61 84.98 79.16 76.78 84.50 85.57

54.81 52.37 58.62 60.07 16.95 29.07 59.84 60.57 63.14 62.54 63.93 64.23 63.20 48.19 62.16 64.53

47.98 61.68 59.23 65.50 11.42 11.42 62.96 60.55 66.51 70.18 67.96 71.54 22.96 51.28 64.20 69.71

49.68 63.50 67.69 63.86 12.62 12.62 67.05 67.70 68.42 69.27 71.78 71.01 65.77 52.24 71.43 70.95

81.06 80.57 83.16 83.21 70.70 68.12 80.07 83.00 84.24 84.15 85.08 85.20 82.03 74.85 83.52 85.20

74.91 83.33 81.23 81.75 14.13 63.06 81.55 82.79 85.68 83.13 85.28 85.41 71.36 75.53 83.47 85.28

13.18 71.42 81.32 80.24 13.18 34.43 76.57 82.20 84.29 81.16 84.20 83.81 81.01 70.68 82.97 84.12

91.33 90.03 89.10 89.33 91.08 88.85 89.03 91.27 91.95 89.99 90.65 90.64 91.77 90.38 90.64 91.99

47.89 39.40 45.38 47.94 13.23 13.30 48.61 49.05 54.94 47.95 53.86 54.31 48.98 34.74 50.18 55.88

10.87 68.82 73.35 74.05 10.87 10.87 66.86 73.80 73.43 75.84 79.01 81.57 10.87 11.73 75.47 78.85

45.87 56.08 58.94 58.92 13.30 13.31 62.06 61.32 66.46 59.77 63.07 63.92 58.78 44.74 66.68 64.86

63.51 88.52 91.42 91.48 58.62 73.32 88.46 91.30 84.05 90.61 93.21 93.16 81.33 82.93 90.24 92.31

64.29 65.61 66.79 62.99 47.25 24.96 67.10 67.30 71.44 69.19 70.56 70.75 71.39 55.59 73.17 72.49

54.60 71.69 74.43 74.69 34.72 44.03 73.32 75.42 76.79 75.80 78.17 78.47 66.57 63.09 76.73 78.71
Table 3. Varying the cardinality of the selected features. The image classification results achieved
in terms of average precision (AP) scores while selecting the first 128 (3%) and 256 (6%) features
from the total 4, 096.

can observe the high variability in classification accuracy; indeed, results show that our
method is robust to classes (i.e., by changing the testing class its performance is always
comparable with the top scoring method).

4.3 Exp. 2: Testing on Microarray Databases

In application fields like biology is inconceivable to devise an analysis procedure which
does not comprise a FS step. A clear example can be found in the analysis of expression
microarray data, where the expression level of thousands of genes is simultaneously
measured. Within this scenario, we tested the proposed approach on four well-known
microarray benchmark datasets for two-class problems. Results are reported in Table 4.
The testing protocol adopted in this experiment consists in splitting the dataset up to 2/3
for training and 1/3 for testing. In order to have a fair evaluation, the feature ranking has
been calculated using only the training samples, and then applied to the testing samples.
The classification is performed using a linear SVM. For setting the best parameters (C
of the linear SVM, and α mixing coefficient) we used a 5-fold cross validation on the
training data. This procedure is repeated several times and results are averaged over the
trials. Results are reported in terms of the Receiver Operating Characteristic or ROC
curves. A widely used measurement that summarizes the ROC curve is the Area Under
the ROC Curve (AUC) [3] which is useful for comparing algorithms independently of
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Microarray Databases
COLON LEUKEMIA

# Features # Features
Method 10 50 100 150 200 Average Time 10 50 100 150 200 Average Time

Fisher 91.00 91.20 89.20 89.90 90.20 90.30 ε 99.32 99.62 99.70 99.62 99.62 99.57 ε

FSV 83.80 86.10 86.80 87.10 86.80 86.12 0.11 98.48 99.47 99.62 99.62 99.70 99.38 0.23

Inf-FS 74.50 86.10 89.90 89.10 90.20 85.96 0.91 99.17 99.92 99.62 99.92 99.85 99.70 5.49

LS 67.00 81.60 83.10 84.70 86.10 80.50 0.03 99.55 99.70 99.77 99.92 99.77 99.74 0.07

MI 90.80 92.70 91.30 91.20 91.40 91.28 0.31 92.73 99.47 99.54 99.62 99.55 98.18 057

ReliefF 71.60 86.80 89.50 90.10 90.10 85.62 0.52 96.67 99.62 99.32 99.55 99.55 98.94 1.09

RFE 87.20 84.90 86.00 86.50 87.60 86.44 0.08 54.39 89.24 95.45 95.45 97.57 86.42 0.02

Ours 89.40 92.00 92.10 91.70 92.40 91.52 0.45 99.85 99.92 99.77 99.92 99.85 99.86 1.50

LYMPHOMA PROSTATE
# Features # Features

Method 10 50 100 150 200 Average Time 10 50 100 150 200 Average Time

Fisher 92.60 99.20 98.80 98.80 99.20 97.72 0.01 95.00 95.00 94.94 95.64 95.90 95.30 0.02

FSV 89.00 96.20 97.19 98.20 97.60 95.64 0.18 96.19 95.67 95.64 95.71 95.26 95.69 0.63

Inf-FS 82.40 96.40 97.80 99.20 98.20 94.80 7.61 73.49 92.24 94.17 95.77 94.87 90.11 26.85

LS 58.00 87.60 93.00 97.60 96.20 86.48 0.04 64.97 88.62 93.62 96.02 96.57 87.96 0.24

MI 91.20 97.20 98.80 98.80 99.00 97.00 0.59 94.01 95.61 95.29 94.68 94.94 94.90 1.01

ReliefF 89.80 98.80 99.00 98.80 98.80 97.04 0.74 93.56 92.72 93.46 93.62 93.85 93.44 2.68

RFE 89.20 96.00 98.00 98.80 99.00 96.20 0.02 63.72 75.67 79.87 86.70 88.72 78.94 0.3

Ours 91.80 99.40 99.20 99.60 99.20 97.84 1.50 96.32 96.28 96.28 95.80 96.32 96.20 2.81

Overall Performance on Microarray Database
Fisher FSV Inf-FS LS MI ReliefF RFE Ours

10 94.48 91.87 82.39 72.38 92.18 87.91 73.63 94.34

50 96.26 94.36 93.67 89.38 96.24 94.49 86.45 96.90

100 95.66 94.82 95.37 92.37 96.23 95.32 89.83 96.84

150 95.99 95.16 96.00 94.56 96.07 95.52 91.86 96.76

200 96.23 94.84 95.78 94.66 95.97 95.57 93.22 96.94

Mean Time 0.01 0.29 10.22 0.10 0.63 1.26 0.04 1.57

Overall Avg. 95.72 94.21 92.64 88.67 95.34 93.76 87.00 96.36
Table 4. The tables show results obtained on the expression microarray scenario. Tests have been
repeated 100 times, and the means of the computed AUCs are reported for each dataset. We
indicate with ε each instance where the approach completed the task in less than 0.01 secs.

application. Hence, classification results for the datasets used show that the proposed
approach produces superior results in all the cases. The overall performance (at the bot-
tom of Table 4) indicates that our approach is more robust than the others, by changing
the data it still produces high quality rankings. We assessed the stability of the selected
features using the Kuncheva index [19]. This stability measure represents the similar-
ity between the set of rankings generated over the different splits of the dataset. The
similarity between sequences of size N can be seen as the number of elements n they
have in common (i.e. the size of their intersection). The Kuncheva index takes values in
[-1, 1], and the higher its value, the larger the number of commonly selected features in
both sequences. The index is shown in Figure 2, comparing our approach and the other
methods. The proposed method shows, in most of the cases, a high stability whereas
the highest performance is achieved.
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Fig. 2. The Kuncheva stability indices for each method in comparison are presented. The figure
reports the stability while varying the cardinality of the selected features from 10 to 200 on
different benchmarks.

4.4 Exp. 2: Other Benchmarks

GINA has sparse input variables consisting of 970 features. It is a balanced data set with
49.2% instances belonging to the positive class. Results obtained on GINA indicate
that the proposed approach overcomes the methods in comparison, and select the most
useful features from a data set with high-complexity and dimensionality. MADELON
is an artificial dataset, which was part of the NIPS 2003 feature selection challenge.
It represents a two-class classification problem with continuous input variables. The
difficulty is that the problem is multivariate and highly non-linear. Results are reported
in Table 5. This gives a proof about the classification performance of our approach that
is attained on the test sets of GINA and MADELON.

FS techniques definitely represent an important class of preprocessing tools, by
eliminating uninformative features and strongly reducing the dimension of the prob-
lem space, it allows to achieve high performance, useful for practical purposes in those
domains where high speed is required.

5 Conclusion
In this paper we present the idea of solving feature selection via the Eigenvector cen-
trality measure. We design a graph – where features are the nodes – weighted by a ker-
nelized adjacency matrix, which draws upon best-practice in feature selection while as-
signing scores according to how well features discriminate between classes. The method
estimates some indicators of centrality identifying the most important features within
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FS Challenge Datasets
GINA - Handwritten Recognition MADELON - Artificial Data

# Features # Features
Method 10 50 100 150 200 Average Time 10 50 100 150 200 Average Time

Fisher 90.0 89.8 89.4 90.2 90.4 89.9 0.05 61.7 61.9 63.0 62.3 64.0 62.5 0.02

FSV 82.4 81.9 83.7 82.0 83.6 82.7 138 61.1 59.9 60.6 61.0 61.0 60.7 732

Inf-FS 77.6 77.9 76.3 77.3 76.9 77.2 0.12 63.8 62.9 63.1 63.2 64.9 63.5 0.04

LS 82.3 82.2 82.4 83.4 83.2 82.7 1.30 63.7 62.8 62.9 63.3 64.7 63.4 8.13

MI 89.5 89.3 89.7 89.8 90.1 89.6 1.13 63.5 63.0 63.7 63.5 64.7 63.6 0.4

ReliefF 89.1 89.0 88.7 89.1 89.0 88.9 41 63.4 62.6 63.8 65.4 60.8 63.2 10.22

RFE 82.3 82.2 82.4 83.4 83.2 82.7 6.60 48.9 55.0 61.2 57.1 60.2 56.5 50163

Ours 90.7 90.9 90.3 90.4 89.5 90.3 1.56 64.4 63.6 63.8 63.7 63.3 63.7 0.57

Table 5. Varying the cardinality of the selected features. (ROC) AUC (%) on different datasets
by SVM classification. Performance obtained with the first 10, 50, 100, 150, and 200 features.

the graph. The results are remarkable: the proposed method has been extensively tested
on 7 different datasets selected from different scenarios (i.e., object recognition, hand-
written recognition, biological data, and synthetic testing datasets), in all the cases we
achieve top performances against 7 competitors selected from recent literature in fea-
ture selection. Our approach is also robust and stable on different splits of the training
data, it performs effectively in ranking high the most relevant features, and it has a very
competitive complexity. This study also points to many future directions; focusing on
the investigation of different implementations for parallel computing for big data analy-
sis or focusing on the investigation of different relations among the features. Finally, for
the sake of repeatability, the source code will be posted on-line to provide the material
needed to replicate our experiments.
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