72 research outputs found

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    A Four-Layer DOI Detector With a Relative Offset for Use in an Animal PET System

    No full text
    For animal PET systems to achieve high sensitivity without adversely affecting spatial resolution, they must have the ability to measure depth-of-interaction (DOI). In this paper, we propose a novel four-layer PET system, and present the performances of modules built to verify the concept of the system. Each layer in the four-layer PET system has a relative offset of half a crystal pitch from other layers. Performances of the four-layer detector were estimated using a GATE Monte Carlo simulation code. The proposed system consists of six H9500 PMTs, each of which contains 3193 crystals. A sensitivity of 11.8% was obtained at the FOV center position of the proposed system. To verify the concept, we tested a PET module constructed using a H9500 flat panel PMT and LYSO crystals of cross-sectional area 1.5 x 1.5 mm(2). The PET module was irradiated with a 1.8 MBq (22)Na radiation source from the front or side of the crystals to obtain flood images of each crystal. Collimation for side irradiation was achieved using a pair of lead blocks of dimension 50 100 200 mm(3). All crystals in the four layers were clearly identified in flood images, thus verifying the DOI capability of the proposed four-layer PET system. We also investigated the optimal combination of crystal lengths in the four-layer PET system using the GATE Monte Carlo simulation code to generate events from simulated radiation sources, and using the ML-EM algorithm to reconstruct simulated radiation sources. The combination of short crystal lengths near radiation sources and long crystal lengths near the PMT provides better spatial resolution than combinations of same crystal lengths in the four-layer PET system.Hong SJ, 2008, IEEE T NUCL SCI, V55, P912, DOI 10.1109/TNS.2008.920258KWON SI, 2008, NUCL MED MOL IMAGING, V42, P469*NEMA STAND, 2008, PUBL NUKim JS, 2007, J NUCL MED, V48, P1527, DOI 10.2967/jnumed.107.040550Inadama N, 2006, IEEE T NUCL SCI, V53, P30, DOI 10.1109/TNS.2005.862963Pomper MG, 2005, CURR PHARM DESIGN, V11, P3247Jan S, 2004, PHYS MED BIOL, V49, P4543, DOI 10.1088/0031-9155/49/19/007Jagoda EM, 2004, NUCL MED BIOL, V31, P771, DOI 10.1016/j.nucmedbio.2004.04.003Inadama N, 2004, IEEE T NUCL SCI, V51, P58, DOI 10.1109/TNS.2004.823332Zhang N, 2003, IEEE T NUCL SCI, V50, P1398, DOI 10.1109/TNS.2003.817954Yamaya T, 2003, IEEE T NUCL SCI, V50, P1404, DOI 10.1109/TNS.2003.817307Daube-Witherspoon ME, 2002, J NUCL MED, V43, P1398STREUN M, 2002, IEEE NSS MIC C REC, V3, P1636Shao Y, 2000, IEEE T NUCL SCI, V47, P1051, DOI 10.1109/23.856546Seidel J, 1999, IEEE T NUCL SCI, V46, P485, DOI 10.1109/23.775567MacDonald LR, 1998, IEEE T NUCL SCI, V45, P2232, DOI 10.1109/23.708354Murayama H, 1998, IEEE T NUCL SCI, V45, P1152, DOI 10.1109/23.681994Yamamoto S, 1998, IEEE T NUCL SCI, V45, P1078, DOI 10.1109/23.681982Dahlbom M, 1997, IEEE T NUCL SCI, V44, P1114, DOI 10.1109/23.596974MOSES WW, 1995, IEEE T NUCL SCI, V42, P1085, DOI 10.1109/23.467744HOFFMAN EJ, 1989, IEEE T NUCL SCI, V36, P1108, DOI 10.1109/23.34613DAUBEWITHERSPOON ME, 1987, J NUCL MED, V28, P1717

    Performance and simulation of a double-gap resistive plate chamber in the avalanche mode

    No full text
    We present a detailed analysis of the time and the charge signals of a prototype double-gap resistive plate chamber for the endcap region of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The chamber was built with relatively low-resistivity bakelite. The time and the charge results demonstrate that the high- voltage plateau, which satisfies various CMS requirements for the efficiency, the noise cluster rate, the fraction of the large signal, and the streamer probability, can be extended at least up to 400 V with the present design. In addition, a simple avalanche multiplication model is studied in detail. The model can reproduce the experimental charge spectra reasonably well. The charge information enables us to estimate the effective Townsend coefficient in avalanche-mode operation

    Beam Test of the First Production Forward RPC

    No full text
    The production of the first set of forward Resistive Plate Chambers (RPC) for the CMS experiment at the Large Hadron Collider (LHC) has started at CERN since June 2004. The detectors are assembled with gas gaps made in Korea, mechanics made in China and are equipped with the final front-end electronics, high/low-voltage distribution and threshold control. After testing and validating one of the preseries RE1/2 chambers, it was coupled to the corresponding Cathode Strips Chamber (CSC), ME1/2 and exposed to muons at the X5A beam area at CERN. Its performance in terms of detection efficiency, noise and cluster size in this beam with 25 ns bunch structure is presented

    Overview of the KoRIA Facility for Rare Isotope Beams

    No full text
    The Korea Rare Isotope Accelerator, currently referred to as KoRIA, is briefly presented. The KoRIA facility is aimed to enable cutting-edge sciences in a wide range of fields. It consists of a 70 kW isotope separator on-line (ISOL) facility driven by a 70 MeV, 1 mA proton cyclotron and a 400 kW in-flight fragmentation (IFF) facility. The ISOL facility uses a superconducting (SC) linac for post-acceleration of rare isotopes up to about 18 MeV/u, while the SC linac of IFF facility is capable of accelerating uranium beams up to 200 MeV/u, 8 p mu A and proton beams up to 600 MeV, 660 mu A. Overall features of the KoRIA facility are presented with a focus on the accelerator design.close5

    Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (s)\sqrt(s) = 0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    No full text
    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/ c to 1 TeV/ c . The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.) , independent of the muon momentum, below 100 GeV/ c . This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pppp collisions at s\sqrt{s} = 7 TeV

    No full text
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at s=7\sqrt{s} = 7~TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity \dnchdeta|_{|\eta| < 0.5} = 5.78\pm 0.01\stat\pm 0.23\syst for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from s=0.9\sqrt{s} = 0.9 to 7~TeV is 66.1\%\pm 1.0\%\stat\pm 4.2\%\syst. The mean transverse momentum is measured to be 0.545\pm 0.005\stat\pm 0.015\syst\GeVc. The results are compared with similar measurements at lower energies.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies
    corecore