6,821 research outputs found

    Multiparticle Interference, GHZ Entanglement, and Full Counting Statistics

    Full text link
    We investigate the quantum transport in a generalized N-particle Hanbury Brown--Twiss setup enclosing magnetic flux, and demonstrate that the Nth-order cumulant of current cross correlations exhibits Aharonov-Bohm oscillations, while there is no such oscillation in all the lower-order cumulants. The multiparticle interference results from the orbital Greenberger-Horne-Zeilinger entanglement of N indistinguishable particles. For sufficiently strong Aharonov-Bohm oscillations the generalized Bell inequalities may be violated, proving the N-particle quantum nonlocality.Comment: 4 pages, 1 figure, published versio

    Construction of optimal witness for unknown two-qubit entanglement

    Full text link
    Whether entanglement in a state can be detected, distilled, and quantified without full state reconstruction is a fundamental open problem. We demonstrate a new scheme encompassing these three tasks for arbitrary two-qubit entanglement, by constructing the optimal entanglement witness for polarization-entangled mixed-state photon pairs without full state reconstruction. With better efficiency than quantum state tomography, the entanglement is maximally distilled by newly developed tunable polarization filters, and quantified by the expectation value of the witness, which equals the concurrence. This scheme is extendible to multiqubit Greenberger-Horne-Zeilinger entanglement.Comment: Phys. Rev. Lett. 105, 230404 (2010); supplementary information (OWitness_sup.pdf) is included in source zip fil

    Ions in solution: Density Corrected Density Functional Theory (DC-DFT)

    Full text link
    Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO\cdotCl^- and HO\cdotH2_2O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent

    Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance

    Get PDF
    This paper describes an ultrasensitive surface plasmon resonance (SPR) detection method using biofunctionalized gold nanorods for the direct detection of protein biomarkers. Immunoglobulin E (IgE), which has separate antibody and DNA aptamer binding sites, was chosen as a model protein for which a sandwich assay platform was designed. Detection was achieved via the specific adsorption of unlabelled IgE proteins onto the surface immobilized aptamer followed by the specific adsorption of anti-IgE coated gold nanorods (Au-NRs). Using the biofunctionalized nanorods in conjunction with SPR, we were able to directly measure IgE proteins at attomolar concentrations. This is a remarkable 108 enhancement compared to conventional SPR measurements of the same surface sandwich assay format ‘anti-IgE/IgE/surface bound IgE-aptamer’ in the absence of gold nanorod signal amplification

    The reverberation signatures of rotating disc winds in active galactic nuclei

    Full text link
    The broad emission lines (BELs) in active galactic nuclei (AGN) respond to ionizing continuum variations. The time and velocity dependence of their response depends on the structure of the broad-line region: its geometry, kinematics and ionization state. Here, we predict the reverberation signatures of BELs formed in rotating accretion disc winds. We use a Monte Carlo radiative transfer and ionization code to predict velocity-delay maps for representative high- (C IV~IV) and low-ionization (Hα\alpha) emission lines in both high- and moderate-luminosity AGN. Self-shielding, multiple scattering and the ionization structure of the outflows are all self-consistently taken into account, while small-scale structure in the outflow is modelled in the micro-clumping approximation. Our main findings are: (1) The velocity-delay maps of smooth/micro-clumped outflows often contain significant negative responses. (2)~The reverberation signatures of disc wind models tend to be rotation dominated and can even resemble the classic "red-leads-blue" inflow signature. (3) Traditional "blue-leads-red" outflow signatures can usually only be observed in the long-delay limit. (4) Our models predict lag-luminosity relationships similar to those inferred from observations, but systematically underpredict the observed centroid delays. (5) The ratio between "virial product" and black hole mass predicted by our models depends on viewing angle. Our results imply that considerable care needs to be taken in interpreting data obtained by observational reverberation mapping campaigns. In particular, basic signatures such as "red-leads-blue", "blue-leads-red" and "blue and red vary jointly" are not always reliable indicators of inflow, outflow or rotation. This may help to explain the perplexing diversity of such signatures seen in observational campaigns to date.Comment: 15 pages, 17 figures, 2 tables. Accepted by MNRAS 20/7/201

    B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis

    Get PDF
    <div><p>Recent success with B cell depletion therapies has revitalized efforts to understand the pathogenic role of B cells in Multiple Sclerosis (MS). Using the adoptive transfer system of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, we have previously shown that mice in which B cells are the only MHCII-expressing antigen presenting cell (APC) are susceptible to EAE. However, a reproducible delay in the day of onset of disease driven by exclusive B cell antigen presentation suggests that B cells require optimal conditions to function as APCs in EAE. In this study, we utilize an <i>in vivo</i> genetic system to conditionally and temporally regulate expression of MHCII to test the hypothesis that B cell APCs mediate attenuated and delayed neuroinflammatory T cell responses during EAE. Remarkably, induction of MHCII on B cells following the transfer of encephalitogenic CD4 T cells induced a rapid and robust form of EAE, while no change in the time to disease onset occurred for recipient mice in which MHCII is induced on a normal complement of APC subsets. Changes in CD4 T cell activation over time did not account for more rapid onset of EAE symptoms in this new B cell-mediated EAE model. Our system represents a novel model to study how the timing of pathogenic cognate interactions between lymphocytes facilitates the development of autoimmune attacks within the CNS.</p></div

    Minimax optimization of entanglement witness operator for the quantification of three-qubit mixed-state entanglement

    Full text link
    We develop a numerical approach for quantifying entanglement in mixed quantum states by convex-roof entanglement measures, based on the optimal entanglement witness operator and the minimax optimization method. Our approach is applicable to general entanglement measures and states and is an efficient alternative to the conventional approach based on the optimal pure-state decomposition. Compared with the conventional one, it has two important merits: (i) that the global optimality of the solution is quantitatively verifiable, and (ii) that the optimization is considerably simplified by exploiting the common symmetry of the target state and measure. To demonstrate the merits, we quantify Greenberger-Horne-Zeilinger (GHZ) entanglement in a class of three-qubit full-rank mixed states composed of the GHZ state, the W state, and the white noise, the simplest mixtures of states with different genuine multipartite entanglement, which have not been quantified before this work. We discuss some general properties of the form of the optimal witness operator and of the convex structure of mixed states, which are related to the symmetry and the rank of states

    A Simulation Model for Electron Irradiation Induced Specimen Charging in a Scanning Electron Microscope

    Get PDF
    A numerical model has been formulated to simulate the dynamics of specimen charging in a scanning electron microscope. In this model, the electric field due to imposed boundary conditions and fixed charges is solved by the finite element method. The empirical electron yield data are stored in Universal Yield Curves (UYC) . These UYCs control the generation of secondary and backscattered electrons from various materials. The electrons emitted from electron-solid interactions are tracked using a leapfrog integration scheme. Excess charges generated on the surface of electrically floating solids are assigned to numerical grids using a linear charge redistribution scheme. The validity of the simulation model was verified by measurements in a special setup which consisted of several isolated electrodes in the SEM chamber. Excess currents generated inside each electrode due to electron irradiation were measured simultaneously. Measurements and simulation results are in broad agreement and show that electrically floating electrodes, not directly irradiated by the primary beam, can charge-up if they are irradiated by secondary electrons and backscattered electrons emitted from a nearby electrode. The polarity of charge generation on the electrically floating solid depends on its own material property, and also strongly on the potential distribution in the space surrounding the floating electrode

    Towards unified understanding of conductance of stretched monatomic contacts

    Full text link
    When monatomic contacts are stretched, their conductance behaves in qualitatively different ways depending on their constituent atomic elements. Under a single assumption of resonance formation, we show that various conductance behavior can be understood in a unified way in terms of the response of the resonance to stretching. This analysis clarifies the crucial roles played by the number of valence electrons, charge neutrality, and orbital shapes.Comment: 2 figure
    corecore