Standard density functional approximations often give questionable results
for odd-electron radical complexes, with the error typically attributed to
self-interaction. In density corrected density functional theory (DC-DFT),
certain classes of density functional theory calculations are significantly
improved by using densities more accurate than the self-consistent densities.
We discuss how to identify such cases, and how DC-DFT applies more generally.
To illustrate, we calculate potential energy surfaces of HO⋅Cl− and
HO⋅H2O complexes using various common approximate functionals, with
and without this density correction. Commonly used approximations yield wrongly
shaped surfaces and/or incorrect minima when calculated self consistently,
while yielding almost identical shapes and minima when density corrected. This
improvement is retained even in the presence of implicit solvent