231 research outputs found
New particle formation in air mass transported between two measurement sites in Northern Finland
This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry) but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the organic vapours to accumulate in the air and to interact with the particles is relatively short. This can lead to low nucleation mode growth rates and even to suppression of detectable particle formation event due to efficient scavenging of newly formed clusters, as was observed in the case studies
An improved criterion for new particle formation in diverse atmospheric environments
A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter <i>L</i><sub>&Gamma;</sub>, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and Hyytiälä (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of <i>L</i><sub>&Gamma;</sub> as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of <i>L</i><sub>&Gamma;</sub>=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when <i>L</i><sub>&Gamma;</sub><0.7 and being suppressed when <i>L</i><sub>&Gamma;</sub>>0.7. Moreover, nearly 45% of measured <i>L</i><sub>&Gamma;</sub> values associated with NPF fell in the relatively narrow range of 0.1<<i>L</i><sub>&Gamma;</sub><0.3
The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales
International audienceThe contribution of boundary layer (BL) nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the BL at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in Hyytiälä, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm?3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental regions are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of BL particle formation over tropical regions and the Amazon is negligible. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget
Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation
International audienceWe have performed a series of simulations with an aerosol dynamics box model to study the connection between new particle formation and sulphuric acid concentration. For nucleation either activation mechanism with a linear dependence on the sulphuric acid concentration or ternary H2O-H2SO4-NH3 nucleation was assumed. We investigated the factors that affect the sulphuric acid dependence during the early stages of particle growth, and tried to find conditions which would yield the linear dependence between the particle number concentration at 3?6 nm and sulphuric acid, as observed in field experiments. The simulations showed that the correlation with sulphuric acid may change during the growth from nucleation size to 3?6 nm size range, the main reason being the size dependent growth rate between 1 and 3 nm. In addition, the assumed size for the nucleated clusters had a crucial impact on the sulphuric acid dependence at 3 nm. The simulations yielded a linear dependence between the particle number concentration at 3 nm and sulphuric acid, when a low saturation vapour pressure for the condensable organic vapour was assumed, or when nucleation took place at ~2 nm instead of ~1 nm. Comparison of results with activation and ternary nucleation showed that ternary nucleation cannot explain the experimentally observed linear or square dependence on sulphuric acid
Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism
We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated vertical profile of particle number concentration does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by the biosphere. <br><br> The simulation of aerosol concentration within the atmospheric boundary layer during nucleation event days shows a highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated the suitability of our turbulent mixing scheme in reproducing the most important characteristics of particle dynamics within the boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles in the lowest part of the atmospheric boundary layer
Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3−6) or formation rates at 1 nm and 3 nm (J1 and J3); 2) the time delays between [H2SO4] and N3−6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]^2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3−6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3−6 and [H2SO4]. The exponents in the J3/[H2SO4]^n_(J3)-connection were consistently higher than or equal to the exponents in the relation N3−6/[H2SO4]^n_(N36). In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for
Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H<sub>2</sub>SO<sub>4</sub>]), and particle concentrations (<I>N</I><sub>3–6</sub>) or formation rates at 1 nm and 3 nm (<I>J</i><sub>1</sub> and <I>J</I><sub>3</sub>); 2) the time delays between [H<sub>2</sub>SO<sub>4</sub>] and <I>N</I><sub>3–6</sub> or <I>J</I><sub>3</sub>, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients <I>A</I> and <I>K</I> in relations <I>J</I><sub>1</sub>=<I>A</I>[H<sub>2</sub>SO<sub>4</sub>] and <I>J</I><sub>1</sub>=<I>K</I>[H<sub>2</sub>SO<sub>4</sub>]<sup>2</sup>, respectively; 4) theoretical predictions for <I>J</I><sub>1</sub> and <I>J</I><sub>3</sub> for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, <I>N</I><sub>3–6</sub> or <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between <I>J</I><sub>3</sub> and [H<sub>2</sub>SO<sub>4</sub>] were consistently lower than the corresponding delays between <I>N</I><sub>3–6</sub> and [H<sub>2</sub>SO<sub>4</sub>]. The exponents in the <I>J</I><sub>3</sub>∝[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>J3</sub></sup>-connection were consistently higher than or equal to the exponents in the relation <I>N</I><sub>3–6</sub>∝[H<sub>2</sub>SO<sub>4</sub> ]<sup>n<sub>N36</sub></sup>. In the <I>J</I><sub>1</sub> values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The <I>J</I><sub>3</sub> values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for
Biological subtyping of early breast cancer : a study comparing RT-qPCR with immunohistochemistry
The biological subtype of breast cancer influences the selection of systemic therapy. Distinction between luminal A and B cancers depends on consistent assessment of Ki-67, but substantial intra-observer and inter-observer variability exists when immunohistochemistry (IHC) is used. We compared RT-qPCR with IHC in the assessment of Ki-67 and other standard factors used in breast cancer subtyping. RNA was extracted from archival breast tumour tissue of 769 women randomly assigned to the FinHer trial. Cancer ESR1, PGR, ERBB2 and MKI67 mRNA content was quantitated with an RT-qPCR assay. Local pathologists assessed ER, PgR and Ki-67 expression using IHC. HER2 amplification was identified with chromogenic in situ hybridization (CISH) centrally. The results were correlated with distant disease-free survival (DDFS) and overall survival (OS). qPCR-based and IHC-based assessments of ER and PgR showed good concordance. Both low tumour MKI67 mRNA (RT-qPCR) and Ki-67 protein (IHC) levels were prognostic for favourable DDFS [hazard ratio (HR) 0.42, 95 % CI 0.25-0.71, P = 0.001; and HR 0.56, 0.37-0.84, P = 0.005, respectively] and OS. In multivariable analyses, cancer MKI67 mRNA content had independent influence on DDFS (adjusted HR 0.51, 95 % CI 0.29-0.89, P = 0.019) while Ki-67 protein expression had not any influence (P = 0.266) whereas both assessments influenced independently OS. Luminal B patients treated with docetaxel-FEC had more favourable DDFS and OS than those treated with vinorelbine-FEC when the subtype was defined by RT-qPCR (for DDFS, HR 0.52, 95 % CI 0.29-0.94, P = 0.031), but not when defined using IHC. Breast cancer subtypes approximated with RT-qPCR and IHC show good concordance, but cancer MKI67 mRNA content correlated slightly better with DDFS than Ki-67 expression. The findings based on MKI67 mRNA content suggest that patients with luminal B cancer benefit more from docetaxel-FEC than from vinorelbine-FEC.Peer reviewe
- …