10 research outputs found

    When Combined with Colistin, an Otherwise Ineffective Rifampicin-Linezolid Combination Becomes Active in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii

    Get PDF
    The synergistic action of colistin, with two antibiotics active in Gram-positive bacteria but unable to kill gram negatives (linezolid and rifampicin), was investigated, since triple combinations are emerging as a tool to overtake multidrug resistance. Checkerboard determinations demonstrated that, when combined with colistin, the combination of linezolid and rifampicin turns active in multidrug-resistant Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Thus, the presence of sublethal concentrations of colistin resulted in a strongly synergistic interaction between these two drugs. Moreover, the minimum inhibitory concentrations of linezolid-rifampicin combinations in the presence of colistin were lower than the maximal concentrations of these antimicrobials ain blood. These findings suggest the use of this triple combination as an effective treatment of multidrug-resistant (MDR) bacterial infections

    Er,Cr:YSGG Laser-Activation Enhances Antimicrobial and Antibiofilm Action of Low Concentrations of Sodium Hypochlorite in Root Canals

    Get PDF
    Abstract: The onset and persistence of endodontic infections due to residual biofilm after chemical disinfection promotes secondary bacterial infection. Alternative methods to disinfect operated root canals are a matter of great interest. The aim was to evaluate the antibacterial effectiveness of sodium hypochlorite (NaOCl) at low concentrations activated by the Er,Cr:YSGG laser-activated irrigation (LAI) against 10-day-old intracanal Enterococcus faecalis biofilm. Biofilms were formed inside the root canals and divided into 7 groups (n13): 0.5% NaOCl + Er,Cr:YSGG; Saline + Er,Cr:YSGG; 0.5% NaOCl + syringe irrigation(SI); 2.5% NaOCl + SI; 5% NaOCl + SI; positive and negative controls. Bacterial survivors were counted and specimens visualized under scanning electron and confocal laser scanning microscopy. Treatments with 0.5% NaOCl + Er,Cr:YSGG and 2.5% NaOCl + SI gave a significant reduction in the number of CFU/mm2. Moreover, scanning electron microscopy and confocal laser scanning microscopy imaging confirmed and reinforced bacteriological data. Thus, Er,Cr:YSGG LAI proved to be able to improve the intracanal distribution of 0.5% NaOCl after 60 s of activation, reaching the same level of effectiveness than 2.5% NaOCl. This is regarded as of clinical interest, since working with lower concentrations may contribute to reduce undesired effects

    An overview of antimicrobial peptides and the latest advances in their development

    Get PDF
    INTRODUCTION: The recent dramatic increase in the incidence of antimicrobial resistance has been recognized by organizations such as the United Nations and World Health Organization as well as the governments of the USA and several European countries. A relatively new weapon in the fight against severe infections caused by multi-drug resistant bacteria is antimicrobial peptides (AMPs). These include colistin, currently regarded as the last line of antimicrobial therapy against multi-drug resistant microorganisms. Areas covered: Here, the authors provide an overview of the current research on AMPs. The focus is AMPs currently being developed for the treatment of recalcitrant bacterial infections, the synergies of AMPs and antibiotics, and the activity of AMPs against biofilm. This review also includes a brief introduction into the use of AMPs in infections caused by Mycobacterium, fungi, and parasites. Expert opinion: In research into new antimicrobials, AMPs are gaining increasing attention. While many are natural and are produced by a wide variety of organisms, others are being newly designed and chemically synthesized in the laboratory to achieve novel antimicrobial agents. The same strategy to fight infections in nature is thus being effectively exploited to safeguard human and animal health

    Novel synthetic polymyxins kill Gram-positive bacteria

    Get PDF
    Background: Staphylococcus aureus, including 'superbug' MRSA, is a major cause of nosocomial infections. In the European Union, up to 171 200 new nosocomial MRSA infections are acquired annually, and in the USA S. aureus causes more deaths than HIV/AIDS and tuberculosis combined. MRSA is also the first group of pathogens that infect the pulmonary tract in young patients with cystic fibrosis. Objectives: We describe two newly developed and synthesized colistin (polymyxin E)-inspired molecules. Methods: A collection of several isolates of S. aureus [including MRSA and vancomycin-resistant S. aureus (VRSA)] was tested. To check the antimicrobial activity, we performed time-kill curves, growth curves, biofilm eradication, toxicity and isothermal titration calorimetry. Results: Both peptides showed high antimicrobial activities (MIC 4 mg/L) and low relative toxicities (selectivity index close to 23). Conclusions: Successful production of polymyxin-scaffold molecules active against S. aureus, both MRSA and VRSA, opens up new approaches to the treatment of these complicated infections

    Efficacy of combinations of colistin with other antimicrobials involves membrane fluidity and efflux machinery

    Get PDF
    Objective: Despite its use was abandoned several decades ago, the polycationic peptide colistin has become the last hope to treat severe infections caused by multidrug-resistant Gram-negative bacteria. Thus, the development of colistin resistance may seriously compromise the efficacy of treatment. Moreover, colistin has high toxicity being dose dependent. A potentially effective strategy to avoid resistance may be to combine colistin with other antimicrobials. This may help in the rescue of old antimicrobials and in reducing toxic undesired effects. Methods: Antimicrobial susceptibility determination, efflux machinery function measurements in different conditions and measurement of inhibition of the extrusion by colistin were performed. Moreover, modifications of anisotropy of the membranes by using fluorescent dyes was accomplished. Results: Sub-inhibitory concentrations of colistin have a synergistic effect with several antimicrobials that act intracellularly (targeting protein synthesis and DNA replication). This effect was demonstrated through the uptake increases of acridine orange. in Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumanii but also in an intrinsically colistin-resistant species as Serratia marcescens. Measurements of the anisotropy of bacterial membranes, as a measure of membrane fluidity, showed significant changes indicative of colistin activity. Conclusion: The alterations in the cellular efflux machinery that resulted in higher intracellular concentrations of acridine orange, and likely of other antimicrobials combined with data of membrane fluidity and measured synergism in vitro allow us to envisage the use of these combinations to fight infections caused by multidrug-resistant bact

    Projecte Portfoli a les practiques de Microbiologia.

    Full text link
    Projecte: 2018PID-UB/B09Projecte d’utilització de la eina portfoli en les practiques de laboratori de microbiologia a odontologia. Actuacions d'avaluacio gamificades

    Substantivity of mouth‑rinse formulations containing cetylpyridinium chloride and O‑cymen‑5‑ol: a randomized‑crossover trial

    Full text link
    Background: The efficacy of mouth-rinses strongly depends upon their substantivity. The use of natural and nontoxic products that avoid secondary effects is gaining interest in preventive dentistry. The purpose of this study was to evaluate the substantivity of two formulations of mouth-washing solutions based on cetylpyridinium (CPC) and O-cymen-5-ol. Methods: This was a randomized, double-blind, crossover trial conducted at the Faculty of Medicine and Health Sciences of the University of Barcelona. Bacterial re-colonization was followed by live/dead (SYTOTM9 + propidium iodide) bacterial staining and measured by confocal laser scanning microscopy and fluorometry. Unstimulated saliva samples were collected from 16 healthy individuals at baseline saliva and then, at 15 min, 30 min and 1, 2, 3, and 4 h after the following mouth-rinses: (i) a single, 1-min mouth-rinse with 15 ml of placebo (negative control); (ii) a single, 1-min mouth-rinse with 15 ml of CPC (0.05%) ; (iii) a single, 1-min mouth-rinse with 15 ml of O-cymen-5-ol (0.09%); (iv) a single, 1-min mouth-rinse with 15 ml of CPC (0.05%) + O-cymen-5-ol (0.09%). Results: Proportion of dead bacteria was significantly higher for all mouthrinses during the first 15 min compared to baseline (CPC = 48.0 ± 13.9; 95% CI 40.98-56.99; p < 0.001, O-cymen-5-ol = 79.8 ± 21.0; 95% CI 67.71-91.90; p < 0.05, CPC + O-cymen-5-ol = 49.4 ± 14; 95% CI 40.98-56.99; p < 0.001 by fluorometry and 54.8 ± 23.0; 95% CI 41.50-68.06; p < 0.001, 76.3 ± 17.1; 95% CI 66.36-86.14; p < 0.001, 47.4 ± 11.9; 95% CI 40.49-54.30; p < 0.001 by confocal laser scanning microscopy, respectively). Nevertheless, after 4 h, CPC + O-cymen-5-ol was the only one that obtained significant values as measured by the two quantification methods used (80.3 ± 22.8; 95% CI 67.15-93.50; p < 0.05 and 81.4 ± 13.8; 95% CI 73.45-89.43; p < 0.05). The combined use of CPC + O-cymen-5-ol increased the substantivity of the mouthrinse with respect to mouthrinses prepared with either of the two active products alone. Conclusion: The synergistic interaction of CPC and O-cymen-5-ol prolongs their substantivity. The resulting formulation may be as effective as other antimicrobials, such as triclosan or chlorhexidine, but without their undesirable secondary effects. Thus, mouthrinsing products based on Combinations of CPC and O-cymen-5-ol may replace in the near future Triclosan and Chlorhexidine¿based mouthrinses

    Studying Lipid Membrane Interactions of a Super-Cationic Peptide in Model Membranes and Living Bacteria

    Full text link
    The super-cationic peptide dendrimers (SCPD) family is a valuable class of antimicrobial peptide candidates for the future development of antibacterial agents against multidrug-resistant gram-negative bacteria. The deep knowledge of their mechanism of action is a major challenge in research, since it may be the basis for future modifications/optimizations. In this work we have explored the interaction between SCPD and membranes through biophysical and microbiological approaches in the case of the G1OLO-L2OL2 peptide. Results support the idea that the peptide is not only adsorbed or close to the surface of the membrane but associated/absorbed to some extent to the hydrophobic-hydrophilic region of the phospholipids. The presence of low concentrations of the peptide at the surface level is concomitant with destabilization of the cell integrity and this may contribute to osmotic stress, although other mechanisms of action cannot be ruled out.

    Bases moleculares de la resistencia a quinolonas en "S. aureus", "S. pneumoniae" y "Corynebacterium" spp.

    No full text
    [spa] Las quinolonas son un grupo de antimicrobianos sintéticos, con un amplio espectro de acción y utilizados con gran éxito para el tratamiento de muy diversas patologías. Es también un grupo en plena fase de desarrollo, donde continuamente están apareciendo nuevas moléculas más activas que las preexistentes en muchos casos.Lamentablemente, la resistencia a quinolonas presenta entre la mayoría de sus moléculas lo que se conoce como resistencia cruzada, o susceptibilidad reducida. Por ello y para poder desarrollar nuevas moléculas dentro de esta familia es importante conocer cuales son los mecanismos de resistencia que presentan los microorganismos, en concreto las bacterias Gram-positivas, frente a estos compuestos. De este modo se podrían diseñar nuevas moléculas que no se vean afectadas por los mecanismos de resistencia ya conocidos. Otro de los parámetros importantes es conocer como las propias quinolonas seleccionan la aparición de mutantes resistentes.Por todos estos motivos, para el presente trabajo se plantearon los siguientes objetivos:1- Investigar las bases moleculares de los mecanismos de resistencia en bacterias Gram-positivas. En concreto, a Staphylococcus aureus un importante patógeno nosocomial, a Streptococcus pneumoniae un patógeno extrahospitalario y a Corynebacterium spp. un patógeno oportunista emergente, perteneciente a la flora habitual de la piel.2- Estudiar la selección in vitro de mutantes resistentes a quinolonas en aislamientos clínicos de S. aureus y S. pneumoniae.3- Determinar el grado de mutagenicidad de las diversas fluoroquinolonas y correlacionarla con la selección de mutantes resistentes.[eng] The quinolones constitutes a group of synthetic antimicrobial agents, with broad spectrum, and have been used with great success for the treatment of a wide variety of pathologies. This group of antimicrobials still under development, and continuously, new molecules more active than the pre-existing ones in many cases are appearing. The resistance to quinolones is present between most of their molecules, this phenomenon is called crossed resistance, or reduced susceptibility. For that reason, to develop new molecules within this family, it is important to know the mechanisms of resistance that the microorganisms presented in front of these compounds, in particular in Gram-positive bacteria. In this way, new molecules could be designed to circumvent the mechanisms of resistance already known. Another important parameter is to know how the quinolones select for resistant mutants. By all these reasons, for the present work the following objectives were considered: 1 - To investigate the molecular bases of the mechanisms of resistance in Gram-positive bacteria. In particular, to Staphylococcus aureus an important nosocomial pathogen, Streptococcus pneumoniae a pathogen causing mainly community-acquired infections and to Corynebacterium spp. an emergent opportunistic pathogen, pertaining to the habitual skin flora. 2 - To study the "in vitro" selection of resistant mutants to quinolones in clinical isolates of S. aureus and S. pneumoniae. To determine the power of mutagenicity of different fluoroquinolones and to correlate it with the selection of resistant mutants

    A role for human Sp alpha as a pattern-recognition receptor

    No full text
    Human Sp alpha is a soluble protein belonging to group B of the scavenger receptor cysteine-rich (SRCR) superfamily for which little functional information is available. It is expressed by macrophages present in lymphoid tissues (spleen, lymph node, thymus, and bone marrow), and it binds to myelomonocytic and lymphoid cells, which suggests that it may play an important role in the regulation of the innate and adaptive immune systems. In the present study we show that recombinant human Sp alpha (rSp alpha) binds to the surface of several gram-positive and gram-negative bacterial strains. Competition studies indicated that such binding is mediated by the recognition of lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, through nonoverlapping sites on the Sp alpha molecule. The most conserved part of LPS (2-keto-3-deoxyoctulosonic acid and lipid A) was shown to be involved in the recognition by Sp alpha. Bacterial binding studies using the SRCR domain 1 of Sp alpha showed that this domain retains both the LPS and LTA binding activities, indicating that both bacterial interacting sites are retained in a single SRCR domain. Furthermore, rSp alpha induced aggregation of gram-positive and gram-negative bacteria strains. On the other hand, rSp alpha inhibited tumor necrosis factor-alpha secretion by human monocytes stimulated with LPS or LTA. Binding of Sp alpha to conserved components of bacterial surfaces and modulation of the monocyte response indicate that this molecule is an active constituent of the innate immune response of the host
    corecore