547 research outputs found

    Cosyntropin as a Therapeutic Intervention following Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is a major health concern in the United States. With over two million occurrences and approximately 50,000 deaths annually, TBI is a leading cause of death in young adults and is associated with cognitive deficits influenced by acute and persistent neuroinflammation. Melanocortins, such as adrenocorticotropic hormone (ACTH), are agonists for melanocortin receptors located in the adrenal glands and peripheral immune cells as well as throughout the central nervous system. Melanocortins ameliorate inflammation and provide a novel therapeutic approach for TBI. The focus of this dissertation was to describe and quantify effects of cosyntropin, a synthetic ACTH analog and melanocortin receptor agonist, on the early inflammatory response and functional outcome in a murine TBI model. We used the controlled-cortical impact model of TBI to induce injury followed by subcutaneous saline or cosyntropin administration. We investigated the effect of cosyntropin on the early inflammatory response through quantification of cytokine expression in contused cortical and hippocampal tissue following injury. Immune cell response was evaluated through immunohistochemical staining and quantification of microglia/macrophage and neutrophil density as well as microglia/macrophage response through morphological feature quantification. Additionally, we assessed and compared the behavioral outcomes through open field, novel object recognition, and Morris water maze (MWM) testing. Cosyntropin reduced the inflammatory response by attenuation of injury-induced increases in IL-1ß, IL-6, and MIP-1 and increased MCP-1 and IL-12 expression in injured cortical tissue. Furthermore, cosyntropin administration reduced accumulation of microglia/macrophages and neutrophils in perilesional cortex and hippocampal regions. Additionally, cosyntropin administration attenuated injury-induced microglia/macrophage morphological changes, suggesting that cosyntropin reduced the activation state of microglia/macrophages. Cosyntropin administration also decreased latency to find the hidden platform during the training period of the MWM compared to saline-treated mice, suggesting improved spatial memory. Reduced immune cell response in conjunction with improved spatial learning in our cosyntropin-treated TBI mice suggests a beneficial anti-inflammatory effect of cosyntropin following TBI. A better understanding of the mechanisms driving the anti-inflammatory and immune modulatory effect of melanocortins in the central nervous system could lead to novel therapeutics providing treatment options for millions suffering from the consequences of TBI and other CNS disorders

    Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases

    Get PDF
    Abstract.: Dihydroxyacetone (Dha) kinases are a family of sequence-conserved enzymes which utilize either ATP (in animals, plants and eubacteria) or phosphoenolpyruvate (PEP, in eubacteria) as their source of high-energy phosphate. The kinases consist of two domains/subunits: DhaK, which binds Dha covalently in hemiaminal linkage to the Nε2 of a histidine, and DhaL, an eight-helix barrel that contains the nucleotide-binding site. The PEP-dependent kinases comprise a third subunit, DhaM, which rephosphorylates in situ the firmly bound ADP cofactor. DhaM serves as the shuttle for the transfer of phosphate from the bacterial PEP: carbohydrate phosphotransferase system (PTS) to the Dha kinase. The DhaL and DhaK subunits of the PEP-dependent Escherichia coli kinase act as coactivator and corepressor of DhaR, a transcription factor from the AAA+ family of enhancerbinding proteins. In Gram-positive bacteria genes for homologs of DhaK and DhaL occur in operons for putative transcription factors of the TetR and DeoR families. Proteins with the Dha kinase fold can be classified into three families according to phylogeny and function: Dha kinases, DhaK and DhaL homologs (paralogs) associated with putative transcription regulators of the TetR and DeoR families, and proteins with a circularly permuted domain order that belong to the DegV famil

    A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate β-arrestin-biased signaling

    Get PDF
    The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through Gq/11and Gi/oto stimulate cytosolic calcium (Ca2+i) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-functionCASRmutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca2+iresponses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSRR680Gin HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca2+iresponses. Moreover, this gain of function in MAPK activity occurred independently of Gq/11and Gi/oand was mediated instead by a noncanonical pathway involving β-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced β-arrestin signaling by disrupting a salt bridge formed between Arg680and Glu767, which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through β-arrestin and the importance of the Arg680-Glu767salt bridge in mediating signaling bias

    Hedgehog-Interacting Protein is a multimodal antagonist of Hedgehog signalling

    Get PDF
    Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling

    Molecular mechanism of BMP signal control by Twisted gastrulation

    Get PDF
    Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    ACL graft re-rupture after double-bundle reconstruction: factors that influence the intra-articular pattern of injury

    Get PDF
    To determine the most common rupture patterns of previously reconstructed DB-ACL cases, seen at the time of revision surgery, and to determine the influence of age, gender, time between the initial ACL reconstruction and re-injury, tunnel angle and etiology of failure. Forty patients who presented for revision surgery after previous double-bundle ACL reconstruction were enrolled. Three orthopedic surgeons independently reviewed the arthroscopic videos and determined the rupture pattern of both the anteromedial and posterolateral grafts. The graft rupture pattern was then correlated with the previously mentioned factors. The most common injury pattern seen at the time of revision ACL surgery was mid-substance AM and PL bundle rupture. Factors that influenced the rupture pattern (proximal vs. mid-substance and distal rupture vs. elongated, but in continuity) were months between ACL reconstruction and re-injury (P = 0.002), the etiology of failure (traumatic vs. atraumatic) (P = 0.025) and the measured graft tunnel angle (P = 0.048). The most common pattern of graft re-rupture was mid-substance AM and mid-substance PL. As the length of time from the initial DB-ACL reconstruction to revision surgery increased, the pattern of injury more closely resembled that of the native ACL. Evaluation of patients who have undergone double-bundle ACL reconstruction, with a particular focus on graft maturity, mechanism of injury and femoral tunnel angles, and graft rupture pattern assists in preoperative planning for revision surger
    corecore