8 research outputs found

    Kinetics of the electropolymerization of aminoanthraquinone from aqueous solutions and analytical applications of the polymer film

    Get PDF
    AbstractPoly 1-amino-9, 10-anthraquinone (PAAQ) films were prepared by the electropolymerization of 1-amino-9,10-anthraquinone (AAQ) on platinum substrate from aqueous media, where 5.0×10−3molL−1 AAQ and 6.0molL−1 H2SO4 were used. The kinetics of the electropolymerization process was investigated by determining the change of the charge consumed during the polymerization process with time at different concentrations of both monomer and electrolyte. The results have shown that the process follows first order kinetics with respect to the monomer concentration. The order of the reaction with respect to the aqueous solvent i.e. H2SO4 was found to be negative. The polymer films were successfully used as sensors for the electroanalytical determination of many hazardous compounds, e.g. phenols, and biologically important materials like dopamine. The electroanalytical determination was based on the measurements of the oxidation current peak of the material in the cyclic voltammetric measurements. The cyclic voltammograms were recorded at a scan rate of 100mVs−1 and different analyte concentrations. A calibration curve was constructed for each analyte, from which the determination of low concentrations of catechol and hydroquinone (HQ) as examples of hazardous compounds present in waste water and also for ascorbic acid and dopamine as examples of valuable biological materials can be achieved

    Construction of chitosan-supported nickel cobaltite composite for efficient electrochemical capacitor and water-splitting applications

    No full text
    Abstract The construction of highly efficient electrode material is of considerable interest, particularly for high capacitance and water-splitting applications. Herein, we present the preparation of a NiCo2O4-Chitosan (NC@Chit) nanocomposite using a simple hydrothermal technique designed for applications in high capacitance and water-splitting. The structure/composition of the NC@Chit composite was characterized using different analytical methods, containing electron microscope (SEM and TEM), and powder X-ray diffraction (XRD). When configured as an anode material, the NC@Chit displayed a high capacitance of 234 and 345 F g−1 (@1Ag−1 for GC/NC and NC@Chit, respectively) in an alkaline electrolyte. The direct use of the catalyst in electrocatalytic water-splitting i.e., HER and OER achieved an overpotential of 240 mV and 310 mV at a current density of 10 mA cm−2, respectively. The obtained Tafel slopes for OER and HER were 62 and 71 mV dec−1, respectively whereas the stability and durability of the fabricated electrodes were assessed through prolonged chronoamperometry measurement at constant for 10 h. The electrochemical water splitting was studied for modified nickel cobaltite surface using an impedance tool, and the charge transfer resistances were utilized to estimate the electrode activity

    A Novel Nano-Composite CSNPs/PVP/CoONPs Coating for Improving Corrosion Resistance of Ti-6Al-4V Alloy as a Dental Implant

    No full text
    A new nano-coating of chitosan nanoparticles/polyvinylpyrrolidone/cobalt oxide nanoparticles (CSNPs/PVP/CoONPs) was performed in this work. The newly designed nano-coating comprises a copolymer and inorganic matrices. This nano-coating was used to cover the Ti-6Al-4V alloy surface as a newly designed dental alloy, and then its corrosion properties were studied through different electrochemical techniques. The results reveal that this novel coating improved the corrosion resistance of the Ti-6Al-4V alloy in artificial saliva solution by reaching 17.7 MΩ cm2. The new fabricated biocompatible coating (CSNPs/PVP/CoONPs) greatly enhanced the electrochemical corrosion resistance by giving a high protection efficiency of 90.87% and a low hydrogen evolution rate in artificial saliva solution at 37 °C. The observed results were confirmed by scanning electron microscopy (SEM), Vickers microhardness testing, coating thickness tests, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray analysis (EDX)

    Polyaniline-Supported Nickel Oxide Flower for Efficient Nitrite Electrochemical Detection in Water

    No full text
    A modified electrode with conducting polymer (Polyaniline) and NiO nanoflowers was prepared to detect nitrite ions in drinking water. A simple method was used to prepare the NiO nanoflower (NiOnF). Several techniques characterized the as-prepared NiOnF to determine the chemical structure and surface morphology of the NiO, such as XRD, XPS, FT-IR, and TGA. The activity of the electrode toward nitrite sensing was investigated over a wide range of pH (i.e., 2 to 10). The amperometry method was used to determine the linear detection range and limit. Accordingly, the modified electrode GC/PANI/NiOnf showed a linear range of detection at 0.1–1 µM and 1–500 µM. At the same time, the limit of detection (LOD) was 9.7 and 64 nM for low and high concentrations, respectively. Furthermore, the kinetic characteristics of nitrite, such as diffusion and transport coefficients, were investigated in various media. Moreover, the charge transfer resistance was utilized for nitrite electrooxidation in different pH values by the electrochemical impedance technique (EIS). The anti-interfering criteria of the modified surfaces were utilized in the existence of many interfering cations in water (e.g., K+, Na+, Cu2+, Zn2+, Ba2+, Ca2+, Cr2+, Cd2+, Pd2+). A real sample of the Nile River was spiked with nitrite to study the activity of the electrode in a real case sample (response time ~4 s). The interaction between nitrite ions and NiO{100} surface was studied using DFT calculations as a function of adsorption energy

    Ni Nanoparticles Embedded Ti3C2Tx-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid

    No full text
    MXenes-Ti3C2Tx, based on their versatile surface characteristics, has rapidly advanced as an interactive substrate to develop electrochemical sensors for clinical applications. Herein, Ni embedded Ti3C2Tx, (MX-Ni) composites were prepared using a self-assembly approach where Ti3C2Tx, sheets served as an interactive conductive substrate as well as a protective layer to nickel nanoparticles (Ni NPs), preventing their surface oxidation and aggregation. The composite displayed a cluster-like morphology with an intimate interfacial arrangement between Ni, Ti3C2Tx and Ti3C2Tx-derived TiO2. The configuration of MX-Ni into an electrochemical sensor realized a robust cathodic reduction current against methylmalonic acid (MMA), a biomarker to vitamin B12 deficiency. The synergism of Ni NPs strong redox characteristics with conductive Ti3C2Tx enabled sensitive signal output in wide detection ranges of 0.001 to 0.003 mu M and 0.0035 to 0.017 mu M and a detection sensitivity down to 0.12 mu M of MMA. Importantly, the sensor demonstrated high signal reproducibility and excellent operational capabilities for MMA in a complex biological matrix such as human urine samples

    The fast nucleation/growth of Co3O4 nanowires on cotton silk : the facile development of a potentiometric uric acid biosensor

    No full text
    In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 +/- 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec(-1). Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.Funding Agencies|King Saud University, Riyadh, Saudi Arabia [RSP-2022/79]</p

    Advanced Urea Precursors Driven NiCo<sub>2</sub>O<sub>4</sub> Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications

    No full text
    The electrochemical performance of NiCo2O4 with urea precursors was evaluated in order to develop a non-enzymatic urea sensor. In this study, NiCo2O4 nanostructures were synthesized hydrothermally at different concentrations of urea and characterized using scanning electron microscopy and X-ray diffraction. Nanostructures of NiCo2O4 exhibit a nanorod-like morphology and a cubic phase crystal structure. Urea can be detected with high sensitivity through NiCo2O4 nanostructures driven by urea precursors under alkaline conditions. A low limit of detection of 0.05 and an analytical range of 0.1 mM to 10 mM urea are provided. The concentration of 006 mM was determined by cyclic voltammetry. Chronoamperometry was used to determine the linear range in the range of 0.1 mM to 8 mM. Several analytical parameters were assessed, including selectivity, stability, and repeatability. NiCo2O4 nanostructures can also be used to detect urea in various biological samples in a practical manner
    corecore