727 research outputs found

    Zernike velocity moments for sequence-based description of moving features

    No full text
    The increasing interest in processing sequences of images motivates development of techniques for sequence-based object analysis and description. Accordingly, new velocity moments have been developed to allow a statistical description of both shape and associated motion through an image sequence. Through a generic framework motion information is determined using the established centralised moments, enabling statistical moments to be applied to motion based time series analysis. The translation invariant Cartesian velocity moments suffer from highly correlated descriptions due to their non-orthogonality. The new Zernike velocity moments overcome this by using orthogonal spatial descriptions through the proven orthogonal Zernike basis. Further, they are translation and scale invariant. To illustrate their benefits and application the Zernike velocity moments have been applied to gait recognition—an emergent biometric. Good recognition results have been achieved on multiple datasets using relatively few spatial and/or motion features and basic feature selection and classification techniques. The prime aim of this new technique is to allow the generation of statistical features which encode shape and motion information, with generic application capability. Applied performance analyses illustrate the properties of the Zernike velocity moments which exploit temporal correlation to improve a shape's description. It is demonstrated how the temporal correlation improves the performance of the descriptor under more generalised application scenarios, including reduced resolution imagery and occlusion

    Conservation of Archaeological Sites in the Pacific

    Get PDF

    A Symbolical Approach to Negative Numbers

    Get PDF
    Recent Early Algebra research indicates that it is better to teach negative numbers symbolically, as uncompleted subtractions or “difference pairs”, an idea due to Hamilton, rather than abstractly as they are currently taught, since all the properties of negative numbers then follow from properties of the subtraction operation with which children are already familiar. Symbolical algebra peaked in the 19th Century, but was superseded by abstract algebra in the 20th Century, because Peacock’s permanence principle, which asserted that solutions obtained symbolically would actually be correct, remained unproven. The main aim of this paper is to provide this missing proof, in order to place difference pairs on a rigorous mathematical foundation, so that they may for the first time be the subject of modern classroom based research. The essential ingredient in this proof is a new physical model, called the banking model, a development of the hills and dales model used in schools in New Zealand, which besides improving upon current models in several respects, has the crucial advantage of being a true physical model, that is, the properties of negative numbers come from freely manipulating the model in the manner of a sandbox, not by following an abstract set of rules. Throughout this paper a close correspondence is drawn between negative numbers viewed as uncompleted subtractions and fractions viewed as uncompleted divisions, which suggests a practical notation for difference pairs as single numbers but whose digits are either positive or negative, the equivalent for integers of the decimal fraction notation for rationals. The banking model is the ideal tool for visualising such positive and negative digits, and examples are provided to show not only that this is a powerful notation for use at Secondary level, but also that it resolves some long-standing problems of the subtraction algorithm at Primary level

    Future Shield/Future Storm

    Get PDF
    My purpose is to address operational issues related to Desert Shield and Desert Storm and implications for employment of U.S, armed forces in the emergent international order. I will structure my comments by asking three questions and, in the answers, will highlight issues and implications by relating Desert Shield to Future Shield and Desert Storm to Future Storm. The questions are: • How do we go about creating Future Shield? • How do we create the correlation of forces necessary to prevail in Future Storm with minimum casualties and damage? • How do we organize to make best use of the forces committed

    Modelling the Deceleration Rate in the Train Braking Profile

    Get PDF
    This paper deals with the analysis of deceleration rate in the train braking profile for one of major transportations company in the Europe The aim is to establish the relation between the declaration rate and the factor preferred by the client. Of all the factors, the most preferred factor was an average gradient experienced by each train. The method used in this paper is hard technique of Operational Research. Mathematical calculation is used to generate the average gradient experienced by each train which will be used to match which with the deceleration rate to established the relation between these two variables using regression analysis. As a conclusion, there was a relation between deceleration rate and average gradient experienced by the train and it was noticeable that driver's actual braking performance of applying deceleration rate was affected by the varying gradient more than constant gradient. As an additional work, the relation between braking distance and deceleration rate is also established. The model can be used as an initial study to determine the distance when the driver should start to brake optimally in further study

    Joint distributions of waves and rain

    Get PDF
    The transfer of gases between the atmosphere and ocean is affected by a number of processes, of which wave action and rainfall are two of potential significance. Efforts have been made to quantify separately their contributions; however such assessments neglect the interaction of these phenomena. Here we look at the correlation statistics of waves and rain to note which regions display a strong association between rainfall and the local sea state. The conditional probability of rain varies from ~0.5% to ~15%, with most of the equatorial belt (which contains the ITCZ) showing a greater likelihood of rain at the lowest sea states. In contrast the occurrence of rain is independent of wave height in the Southern Ocean. The 1997/98 El Niño enhances the frequency of rain in some Pacific regions, with this change showing some association with wave conditions

    Temperature and Moisture Influence on Compression-Recovery Behavior of Wood

    Get PDF
    The primary limitation of non-veneer wood composites for applications in moist environments is dimensional instability. Thickness instabilities from moisture absorption primarily result from damaged cell structures that recover upon absorption of moisture. Previous research has shown that manipulating the pressing parameters involved in the manufacture of non-veneer wood composites (i.e., temperature and moisture) can lead to a more dimensionally stable product. However, the precise phenomena controlling these changes are not fully defined. To understand development of pressing-induced damage, the large strain, compression-recovery behavior of wood and polyurethane (PUR) foam (i.e., as a model system) was studied at a variety of compression temperatures spanning the glassy to rubber transition. The behavior is then related to polymer phase transitions to discern the role of viscoelastic behavior in damage evolution. The elastic modulus (E) and yield stress (σy) were used to characterize the elastic region of compression, whereas fractional recovery (R) and dissipated energy (ΔE) represented the inelastic component. The PUR foam displayed a distinct glassy plateau region dominated by E, σy, and ΔE as well as low R. Wood with 22 and 12% MC behaved similarly to the elastomeric PUR foam; however, limits on environmental control prevented testing in the rubbery regime for the 12% MC samples. The E and σy also decreased with increasing compression temperature for ovendried yellow-poplar. However, in contrast to yellow-poplar with either 12 or 22% MC, an increase in ΔE was accompanied by a decrease in R with increasing compression temperature of the oven-dried yellow-poplar. An apparent change in mechanism occurs when compressing wood at high temperatures without moisture present. This change was attributed to kinetic effects such as thermal degradation or crosslinking reactions
    corecore