85 research outputs found

    Front-loading Urban Stormwater Management for Success – A Perspective Incorporating Current Studies on the Implementation of Retrofit Low-impact Development

    Get PDF
    Recent work into the implementation of low-impact development (LID) suggests that a decentralized, source-control approach has the potential to significantly reduce urban stormwater runoff quantity. The practice of retrofit stormwater management is currently dominated by demonstration projects, and some additional momentum is required to spur adoption and upscaling of LID practices so that the scale of this management approach can better match the scale of disturbance. This momentum may be provided in part by targeted research into effectiveness of stormwater best management practices insofar as research accounts for cost and effectiveness (e.g., water quality benefits, and actual stormwater capture) under a variety of climate conditions. We posit that the factors of increasing public participation in stormwater management; engaging local agencies and non-governmental organizations (NGOs); application of proven source control methods to mitigate runoff formation; and science-based, comprehensive monitoring strategies are all important to the sustainable implementation of retrofit low-impact development. From the perspective of Federal researchers and local NGOs, this paper presents features, objectives, and costs of recent efforts to properly scale demonstration projects and broader LID initiatives. In order to realize the full benefits of decentralized LID stormwater management practices in urban and suburban areas, we conclude that a nexus must exist of a motivated and engaged citizenry, solid support from municipal and regional agencies, sound source control management practices, and follow-up monitoring to judge effectiveness

    A structured decision approach for integrating and analyzing community perspectives in re-use planning of vacant properties in Cleveland, Ohio

    Get PDF
    An integrated GIS-based, multi-attribute decision model deployed in a web-based platform is presented enabling an iterative, spatially explicit and collaborative analysis of relevant and available information for repurposing vacant land. The process incorporated traditional and novel aspects of decision science, beginning with an analysis of alternatives, building on this analysis with a workshop to elucidate opinions and concerns from key decision-makers relevant to the problem at hand, then expanded by extracting and compiling fundamental objectives from existing planning efforts and previously published long-term goals. The model was then constructed as an open-source, web-based software platform for use as a process for exploring, evaluating, comparing, and optimizing fundamental, strategic, and means objectives. The resulting beta model, MURL-CLE, is intended to allow all interested parties, from stakeholders to decision makers, to consider alternative options for reuse of vacant land in a neighborhood in Cleveland, OH and to do so in a deliberative, transparent, and defensible process. The beta model is intended to be a platform for growth as a decision science tool and to provide a reproducible mechanism for considering any complex decision that attempts to incorporate multiple competing objectives and to allow an iterative process, as opposed to a prescribed solution or ranking of alternatives, for community decision making

    The hydrologic role of urban green space in mitigating flooding (Luohe, China)

    Get PDF
    Even if urban catchments are adequately drained by sewer infrastructures, flooding hotspots develop where ongoing development and poor coordination among utilities conspire with land use and land cover, drainage, and rainfall. We combined spatially explicit land use/land cover data from Luohe City (central China) with soil hydrology (as measured, green space hydraulic conductivity), topography, and observed chronic flooding to analyze the relationships between spatial patterns in pervious surface and flooding. When compared to spatial–structural metrics of land use/cover where flooding was commonly observed, we found that some areas expected to remain dry (given soil and elevation characteristics) still experienced localized flooding, indicating hotspots with overwhelmed sewer infrastructure and a lack of pervious surfaces to effectively infiltrate and drain rainfall. Next, we used curve numbers to represent the composite hydrology of different land use/covers within both chronic flooding and dry (non-flooding) circles of 750 m diameter, and local design storms to determine the anticipated average proportion of runoff. We found that dry circles were more permeable (curve number (mean ± std. error) = 74 ± 2, n = 25) than wetter, flooded circles (curve number = 87 ± 1). Given design storm forcing (20, 50, 100 years’ recurrence interval, and maximum anticipated storm depths), dry points would produce runoff of 26 to 35 percent rainfall, and wet points of 52 to 61 percent of applied rainfall. However, we estimate by simulation that runoff reduction benefits would decline once infiltration-excess (Hortonian) runoff mechanisms activate for storms with precipitation rates in excess of an average of 21 mm/h, contingent on antecedent moisture conditions. Our spatial metrics indicate that larger amounts and patches of dispersed green space mitigate flooding risk, while aggregating buildings (roofs) and green space into larger, separate areas exacerbates risk

    Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream

    Get PDF
    1. Primary production and respiration in streams, collectively referred to as stream ecosystem metabolism, are fundamental processes that determine trophic structure, biomass and nutrient cycling. Few studies have used high‐frequency measurements of gross primary production (GPP) and ecosystem respiration (ER) over extended periods to characterise the factors that control stream ecosystem metabolism at hourly, daily, seasonal and annual scales. 2. We measured ecosystem metabolism at 5‐min intervals for 23 months in Shepherd Creek, a small suburban stream in Cincinnati, Ohio (U.S.A.). 3. Daily GPP was best predicted by a model containing light and its synergistic interaction with water temperature. Water temperature alone was not significantly related to daily GPP, rather high temperatures enhanced the capacity of autotrophs to use available light. 4. The relationship between GPP and light was further explored using photosynthesis–irradiance curves (P–I curves). Light saturation of GPP was evident throughout the winter and spring and the P–I curve frequently exhibited strong counterclockwise hysteresis. Hysteresis occurred when water temperatures were greater in the afternoon than in the morning, although light was similar, further suggesting that light availability interacts synergistically with water temperature. 5. Storm flows strongly depressed GPP in the spring while desiccation arrested aquatic GPP and ER in late summer and autumn. 6. Ecosystem respiration was best predicted by GPP, water temperature and the rate of water exchange between the surface channel and transient storage zones. We estimate that c. 70% of newly fixed carbon was immediately respired by autotrophs and closely associated heterotrophs. 7. Interannual, seasonal, daily and hourly variability in ecosystem metabolism was attributable to a combination of light availability, water temperature, storm flow dynamics and desiccation. Human activities affect all these factors in urban and suburban streams, suggesting stream ecosystem processes are likely to respond in complex ways to changing land use and climate

    Sustainability for shrinking cities

    Get PDF
    Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing conditions and to cope with major events. The dynamics of shrinking cities are different than the dynamics of growing cities, and therefore intentional research and planning around creating sustainable cities is needed for shrinking cities. We propose research that can be applied to shrinking cities by identifying parallel challenges in growing cities and translating urban research and planning that is specific to each city’s dynamics. In addition, we offer applications of panarchy concepts to this problem. The contributions to this Special Issue take on this forward-looking planning task through drawing lessons for urban sustainability from shrinking cities, or translating general lessons from urban research to the context of shrinking cities

    Genuine Faculty-Mentored Research Experiences for In-Service Science Teachers: Increases in Science Knowledge, Perception, and Confidence Levels

    Get PDF
    The overall purpose of this multifocused study was to explore how participation in genuine mentored scientific research experiences impacts in-service science teachers and the knowledge and skills needed for their own science teaching. The research experiences resulted from a partnership between the University of Nebraska at Omaha and the Omaha Public School District. This Teacher- Researcher Partnership Program facilitated opportunities in inquiry, science content, interaction with laboratory instrumentation and technologies, critical discussion of literature, and dissemination of findings for participating in-service science teacher professional development utilizing an inquiry-based theoretical framework wherein we examined science teacher preparation via inquiry-based methods in the research laboratory. A mixed-methods approach with a convergent typology (i.e., qualitative and quantitative analyses conducted separately and integrated) was used to investigate the impact of the program on teachers. Our research question was as follows: How do teachers define and approach scientific research before and after a genuine research experience? We observed 3 emergent nodes or themes by which teachers indicated significant gains: science content knowledge, confidence, and perception. Moreover, we determined that participation by science teachers in a mentored research experience using current scientific technologies and tools improved teacher confidence in science and inquiry as well as an ongoing commitment to provide similar types of experiences to their students. These data support the need for the participation of in-service science teachers in genuine research experiences to boost technological and pedagogical content knowledge, confidence in process and content, and the perception of translatability to the classroom

    How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood

    Get PDF
    Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens) that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km2 Shepherd Creek catchment in Cincinnati, Ohio (USA). In 2007–2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment) subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year) physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment) and high total impervious levels (13.1% to 19.9% in experimental subcatchments), we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions). Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and parking lots). Further research is needed to define the minimum effect threshold and restoration trajectories for retrofitting catchments to improve the health of stream ecosystems

    SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage

    Get PDF
    Open Access articleThe management of urban stormwater has become increasingly complex over recent decades. Consequently, terminology describing the principles and practices of urban drainage has become increasingly diverse, increasing the potential for confusion and miscommunication. This paper documents the history, scope, application and underlying principles of terms used in urban drainage and provides recommendations for clear communication of these principles. Terminology evolves locally and thus has an important role in establishing awareness and credibility of new approaches and contains nuanced understandings of the principles that are applied locally to address specific problems. Despite the understandable desire to have a ‘uniform set of terminology’, such a concept is flawed, ignoring the fact that terms reflect locally shared understanding. The local development of terminology thus has an important role in advancing the profession, but authors should facilitate communication between disciplines and between regions of the world, by being explicit and accurate in their application

    Upregulation of miR-31* Is Negatively Associated with Recurrent/Newly Formed Oral Leukoplakia

    Get PDF
    BACKGROUND: Oral leukoplakia (OLK) is a potentially malignant disorder of the oral cavity. However, the underlying mechanism of OLK is still unclear. In this study, we explore possible miRNAs involved in OLK. METHODOLOGY/PRINCIPAL FINDINGS: Using miRNA microarrays, we profiled miRNA expression in OLK and malignantly transformed OLK (mtOLK) tissue samples. The upregulation of miR-31*, miR-142-5p, miR-33a, miR-1259, miR-146b-5p, miR-886-3p, miR-886-5p, miR-519d, and miR-301a along with the downregulation of miR-572, miR-611, miR-602, miR-675, miR-585, miR-623, miR-637, and miR-1184 in mtOLK were new observations. Fluorescence in situ hybridization (FISH) analyses confirmed that miR-31* is highly expressed in mtOLK. There was a significant difference between the FISH score (p<0.05) in patients with or without recurrent/newly formed OLK. Functional analyses demonstrated that a miR-31* inhibitor decreased apoptosis in the Leuk-1, which is an immortalized oral epithelial cell line spontaneously derived from an oral leukoplakia lesion. miR-31* regulated apoptosis, cell proliferation, migration, and invasion in the HOIEC, which is a HPV E6/E7-immortalized oral epithelial cell line. Furthermore, miR-31* modulated the biological functions of apoptosis, cell proliferation, cell cycle, migration, and invasion in the oral squamous cell carcinoma cell line, Cal-27. Using bioinformatic analyses and dual luciferase reporter assays, we determined that the 3' untranslated region of fibroblast growth factor 3 (FGF3) is the target of miR-31*. Expression of FGF3 was downregulated or upregulated in the presence of a miR-31* mimic or inhibitor, respectively. CONCLUSIONS/SIGNIFICANCE: Upregulation of miR-31* is negatively associated with recurrent/newly formed OLK. MiR-31* may exert similar but distinguishable effects on biological function in oral cells with different malignant potential. FGF3 is the target of miR-31*. miR-31* may play an important role during OLK progression through regulating FGF3. MiRNA* strands may also have prominent roles in oral carcinogenesis
    corecore