24 research outputs found

    A minimization method with approximation of feasible set and epigraph of objective function

    Get PDF
    © 2016, Allerton Press, Inc.For a convex programming problem we propose a solution method which belongs to the class of cutting-plane methods. When constructing approximate solutions to the problem, this technique concurrently approximates its feasible set and the epigraph of the objective function. Planes for cutting the iteration points are being constructed with the help of subgradients of the objective function and left-hand sides of constraints. In this connection, one can find each iteration point by solving a linear programming problem. As distinct from most other well-known cuttingplane methods, the proposed technique allows the possibility to periodically update approximating sets by dropping accumulated constraints. We substantiate the convergence of the proposed method and discuss its numerical realization

    Enhancement of Manufacturing Technology for Finished Dosage Form of Bivalent Chemical Tableted Cholera Vaccine

    Get PDF
    Objective of the study is to experimentally substantiate the possibility to improve manufacturing efficiency by means of mass reduction of a vaccine tablet from 300 to 100 mg. Materials and methods. Inaba O-antigen lyophilizate serves as the specific immunogenic component of the vaccine. Results and conclusions. It is identified that it is expedient to produce tablets of 6 mm in diameter. Justified is the quantitative content of additive substances (lactose monohydrate, micro-crystal cellulose, and polyvinylpyrolidone). Moreover, the studies have specified target values for technological parameters of such processes as fluid bed granulation of the formula with overfeed of the binder, tablet compression and enteric-coating (Acryl-eze) application to finished dosage form. Using Inaba O-antigen lyophilizate manufactured has been model experimental series of the vaccine. Investigated have been its characteristics. Verified vaccine quality indicators testify to the compliance of the product with the requirements of manufacturer’s pharmacopoeial monograph. The studies exercised showed the possibility in principle to enhance manufacturing efficacy through the decrement of additives amounts, and thus the mass of a vaccine tablet from 300 up to 100 mg

    Assessment of Stability of Chemical Cholera Vaccine in a New Primary Packaging

    Get PDF
    The bivalent chemical cholera vaccine is the only drug for the prevention of cholera registered in the Russian Federation. The vaccine has been produced in glass bottles containing 210 tablets. At the same time, modern trends dictate the need to produce the drug in varying dispensing and more practical packaging for the convenience of the consumer.The aim of the work was to study the stability of the properties of the immunobiological medicinal product “Bivalent chemical cholera vaccine” with modified filling and in new primary packaging.Materials and methods. When studying the quality of bivalent chemical cholera vaccine batches, physicochemical parameters, formaldehyde content, specific activity and safety, abnormal toxicity, immunogenicity, and microbiological purity were assessed. Stability in terms of “specific activity” was evaluated using dot immunoassay.Results and discussion. As a result of this work, the use of several dispensing options and new primary packaging of cholera vaccine has been experimentally substantiated. The stability of the finished vaccine preparation has been established in the “accelerated aging” test and during long-term storage. The possibility of using dot immunoassay with a conjugate based on staphylococcal protein A, labeled with colloidal gold, to monitor the stability of cholera vaccine has been experimentally demonstrated

    Development and Main Stages of Introduction of the Preparation “Cholera O139 Diagnostic Fluorescent Immunoglobulins”

    Get PDF
    – for environmental objects. Application of the preparation for practical purposes was considered to be promising, and it was recommended for State registration as a product of medical application

    Introduction of New Preparations for Gene Diagnostics of Dengue Fever and Cholera

    Get PDF
    Presented is the information on technical and medical trials of new generation preparations for gene diagnostics of Dengue fever and cholera, based on the multiple factor analysis. Application of these preparations makes it possible not only to detect pathogen but also to carry out its expedited identification in accordance with epidemiological significance and taxonomic status

    Crossing the Dripline to 11N Using Elastic Resonance Scattering

    Get PDF
    The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion completely analogous to its mirror partner, 11Be. A narrow resonance in the excitation function at 4.33 (+-0.05) MeV was also observed and assigned spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR

    Constructing and Medical Trials of a Monoclonal Dot-Immuno-Enzyme Test-System “DIATul-M” for Tularemia Microbe Detection

    Get PDF
    mc/ml. Additionally, this test-system has been proving for acquisition of sustainable results after 6 months of storing (the observation period). Medical trials of the panel of reagents “Monoclonal dot-immuno-enzyme test-system for tularemia microbe detection” have shown it to be a prospective preparation for implementation into the national healthcare practices both under stationary and field conditions

    DIAGNOSTIC POTENTIAL OF THE ERYTHROCYTIC IMMUNOGLOBULIN DIAGNOSTICUM FOR INDICATION AND IDENTIFICATION OF THE CAUSATIVE AGENTS OF PARTICULARLY DANGEROUS (DEEP) MYCOSES

    Get PDF
    Objective of the study was to assess analytical and diagnostic sensitivity and specificity of the “Reagent kit. Erythrocytic coccidioidomycosal and histoplasmosal immunoglobulin dry diagnosticum”, designed for identification of causative agents of coccidioidomycosis and histoplasmosis in isolated cultures of micromycetes, as well as in clinical and biological samples using indirect hemagglutination test.Materials and methods. The investigation included 264 positive samples (216 samples of micromycete suspensions, 48 samples of biological and clinical material) containing pathogens of histoplasmosis and coccidioidomycosis concentrated up to 3,12·106 and 1,56·106 cells/ml, respectively, and 128 negative samples containing heterologous microorganisms in concentrations equal to 5·106 cells/ml. The study was carried out using biological samples that were artificially contaminated with stated pathogens of particularly dangerous mycoses and samples, obtained from bioassay animals with experimental infection.Results and conclusions. It is established that diagnostic sensitivity of the reagent kit is not less than 99,0 %. The diagnostic specificity is not less than 98,0 %. Reproducibility of the results in all cases was 100 %. The results obtained testify to the prospect of introduction of the developed kit into the health care practice

    Immunogenic and Protective Features of the Recombinant Vaccinia Virus Strain Expressing Cassette of Genes of Marburg Virus Structural Proteins

    Get PDF
    The aim of the study was to create a highly immunogenic vaccine construct based on a recombinant variant of a replication-defective MVA strain of vaccinia virus, expressing virus-like particles that mimic natural infection with Marburg virus. Materials and methods. The recombinant virus was obtained through recombination between homologous viral DNA sequences and the insertion plasmid pDel2-GP-VP-Pat which carries transgenes of the structural proteins GP and VP40 of Marburg virus, flanked by fragments of MVA strain genome. Structure of the recombinant virus was confirmed in PCR and using sequencing, transgenes expression was analyzed by Western blotting, viruslike particles formation was recorded using electron microscopy. Evaluation of immunogenicity and protectivity was carried out using a guinea pig model. The antibody titer was determined in enzyme-linked immunosorbent assay. To assess T-cell response, the intracellular staining of cytokines was used, followed by analysis of samples on a flow cytometer. Results and discussion. On the basis of highly attenuated MVA strain of vaccinia virus a recombinant variant MVA-GP-VP40-MARV has been constructed, carrying a cassette of transgenes, GP and VP40, of Marburg virus in the region of deletion II of the genome. The expression of transgenes in MVA-permissive CER cells infected with recombinant MVA-GP-VP40-MARV strain and secretion of GP and VP40 proteins into culture medium have been demonstrated. Electron microscopy analysis has revealed the presence of Marburg virus-like particles in the culture medium of cells 12 hours after infection. Double vaccination of guinea pigs with MVA-GP-VP40-MARV strain at a dose of 108 PFU/animal induced the formation of antibodies to Marburg and vaccinia viruses, as well as 100 % protection against lethal Marburg virus infection (50 LD50). Using original TEpredict software, the structure of T-helper epitopes of GP protein has been predicted. Using the ICS method, the biological activity of these epitopes has been experimentally confirmed and it was shown that they provide the induction of a T-cell immune response as part of the MVA-GP-VP40-MARV vaccine construct

    A minimization method with approximation of feasible set and epigraph of objective function

    No full text
    © 2016, Allerton Press, Inc.For a convex programming problem we propose a solution method which belongs to the class of cutting-plane methods. When constructing approximate solutions to the problem, this technique concurrently approximates its feasible set and the epigraph of the objective function. Planes for cutting the iteration points are being constructed with the help of subgradients of the objective function and left-hand sides of constraints. In this connection, one can find each iteration point by solving a linear programming problem. As distinct from most other well-known cuttingplane methods, the proposed technique allows the possibility to periodically update approximating sets by dropping accumulated constraints. We substantiate the convergence of the proposed method and discuss its numerical realization
    corecore