419 research outputs found

    Nebraska\u27s Game Resources and Their Conservation

    Get PDF

    Nebraska\u27s Game Resources and Their Conservation

    Get PDF

    Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1) which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522.</p> <p>Methods</p> <p>The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS) involvement was additionally established by generation of ROS prior to modulation of adaphostin-toxicity with antioxidants. To identify up-stream regulatory elements of HMOX1, immunofluorescence was used to evaluate nuclear translocation of the transcription factor, NF-E2-related factor 2 (Nrf2), in the presence of adaphostin. The PI3-kinase inhibitor, wortmannin, was employed as a pharmacological inhibitor of this process.</p> <p>Results</p> <p>Generation of ROS provided a substantial foundation for the sensitivity of NCI-H522 to adaphostin. However, in contrast to leukemia cell lines, transcriptional response to oxidative stress was associated with induction of HMOX1, which was dependent on nuclear translocation of the transcription factor, Nrf2. Pretreatment of cells with wortmannin inhibited translocation of Nrf2 and induction of HMOX1. Wortmannin pretreatment was also able to diminish adaphostin induction of HMOX1, and as a consequence, enhance the toxicity of adaphostin to NCI-H522.</p> <p>Conclusions</p> <p>Adaphostin-induced oxidative stress in NCI-H522 was mediated through nuclear translocation of Nrf2 leading to upregulation of HMOX1. Inhibition of Nrf2 translocation by wortmannin inhibited this cytoprotective response, and enhanced the toxicity of adaphostin, suggesting that inhibitors of the PI3K pathway, such as wortmannin, might augment the antiproliferative effects of adaphostin in solid tumors that depend on the Nrf2/ARE pathway for protection against oxidative stress.</p

    Identification of Polymerase and Processivity Inhibitors of Vaccinia DNA Synthesis Using a Stepwise Screening Approach

    Get PDF
    Nearly all DNA polymerases require processivity factors to ensure continuous incorporation of nucleotides. Processivity factors are specific for their cognate DNA polymerases. For this reason, the vaccinia DNA polymerase (E9) and the proteins associated with processivity (A20 and D4) are excellent therapeutic targets. In this study, we show the utility of stepwise rapid plate assays that i) screen for compounds that block vaccinia DNA synthesis, ii) eliminate trivial inhibitors, e.g. DNA intercalators, and iii) distinguish whether inhibitors are specific for blocking DNA polymerase activity or processivity. The sequential plate screening of 2,222 compounds from the NCI Diversity Set library yielded a DNA polymerase inhibitor (NSC 55636) and a processivity inhibitor (NSC 123526) that were capable of reducing vaccinia viral plaques with minimal cellular cytotoxicity. These compounds are predicted to block cellular infection by the smallpox virus, variola, based on the very high sequence identity between A20, D4 and E9 of vaccinia and the corresponding proteins of variola

    A comparison of the hypoglycemic effect of insulin with systemic venous and portal venous administration

    Get PDF
    The hyperglycemic effect of insulin by prolonged intraportal and systemic infusion was measured in unanesthetized dogs with a modified portacaval transposition. There was no significant difference in response with the two routes of administration. The relation of these results to research directed to surgical therapy of diabetes is discussed. © 1963 W. B. Saunders Company

    Effect of insulin on glucose metabolism in the dog after portacaval transposition

    Get PDF
    The effect of insulin on hepatic glucose metabolism was studied by a multiple-catheter technique in unanesthetized dogs with Eck fistula and with portacaval transposition. With the latter preparation, blood entering and leaving the liver was sampled from peripherally inserted catheters. In the unanesthetized Eck-fistula animals, insulin infusion produced a decrease in the hepatic glucose output. In the dogs with portacaval transposition, a constant infusion of insulin was given alternately by systemic and by intraportal routes. There was no significant difference between the effects of insulin administered by the two routes. During insulin infusion, glucose concentration differences across the liver were reduced, hepatic plasma flow was transiently elevated, and hepatic glucose output was decreased. After discontinuance of insulin, there was a transient rise of hepatic glucose output to above control values. </jats:p

    Towards Gravitational Wave Signals from Realistic Core Collapse Supernova Models

    Full text link
    We have computed the gravitational wave signal from supernova core collapse using the presently most realistic input physics available. We start from state-of-the-art progenitor models of rotating and non-rotating massive stars, and simulate the dynamics of their core collapse by integrating the equations of axisymmetric hydrodynamics together with the Boltzmann equation for the neutrino transport including an elaborate description of neutrino interactions, and a realistic equation of state. We compute the quadrupole wave amplitudes, the Fourier wave spectra, the amount of energy radiated in form of gravitational waves, and the S/N ratios for the LIGO and the tuned Advanced LIGO interferometers resulting both from non-radial mass motion and anisotropic neutrino emission. The simulations demonstrate that the dominant contribution to the gravitational wave signal is produced by neutrino-driven convection behind the supernova shock. For stellar cores rotating at the extreme of current stellar evolution predictions, the core-bounce signal is detectable with advanced LIGO up to a distance of 5kpc, whereas the signal from post-shock convection is observable up to a distance of about 100kpc. If the core is non-rotating its gravitational wave emission can be measured up to a distance of 15kpc, while the signal from the Ledoux convection in the deleptonizing, nascent neutron star can be detected up to a distance of 10kpc. Both kinds of signals are generically produced by convection in any core collapse supernova.Comment: 9 pages, 13 figures, Latex, submitted to ApJ, error in ps-file fixed; figures in full resolution are available upon reques

    X-ray structures of checkpoint kinase 2 in complex with inhibitors that target its gatekeeper-dependent hydrophobic pocket

    Get PDF
    AbstractThe serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC50 values in the low nanomolar range and are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding

    Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies

    Get PDF
    Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase–inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI–sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers
    corecore