701 research outputs found

    Increase in ADP-ribosyltransferase activity of rat T lymphocyte alloantigen RT6.1 by a single amino acid mutation

    Get PDF
    AbstractA family of glycosylphosphatidylinositol-linked ADP-ribosyltransferases, of which cDNAs were cloned from various mammalian cells, possess a common Glu-rich motif (EEEVLIP) near their carboxyl termini. Although the first Glu in the common motif is replaced by Gln (Q207EEVLIP) in rat T lymphocyte alloantigens RT6.1 and RT6.2, the two RT6s appear to have both activities of NAD+ glycohydrolase and ADP-ribosyltransferase to a lesser extent. To investigate the significance of the Glu-rich motif in the two enzyme activities, we produced a mutant RT6.1 (Q207E), in which Gln207 was replaced by Glu, together with wild-type RT6s, in Escherichia coli. Kinetic analysis revealed that there were no marked differences in the Vmax and Km values of NAD+ glycohydrolases among the three recombinant proteins. The recombinant RT6.1 and RT6.2 displayed extremely low auto-ADP-ribosylation, although the latter modification was somewhat higher than the former. In contrast, much greater auto-modification was observed for the Q207E mutant. Moreover, the mutant could effectively ADP-ribosylate agmatine as a substrate. Thus, the single amino acid mutation of RT6.1 caused a marked increase in its ADP-ribosyltransferase activity, indicating that the Glu-rich motif near the carboxy terminus plays an important role in the enzyme activity

    MARCH1 protects the lipid raft and tetraspanin web from MHCII proteotoxicity in dendritic cells

    Get PDF
    Dendritic cells (DCs) produce major histocompatibility complex II (MHCII) in large amounts to function as professional antigen presenting cells. Paradoxically, DCs also ubiquitinate and degrade MHCII in a constitutive manner. Mice deficient in the MHCII-ubiquitinating enzyme membrane-anchored RING-CH1, or the ubiquitin-acceptor lysine of MHCII, exhibit a substantial reduction in the number of regulatory T (Treg) cells, but the underlying mechanism was unclear. Here we report that ubiquitin-dependent MHCII turnover is critical to maintain homeostasis of lipid rafts and the tetraspanin web in DCs. Lack of MHCII ubiquitination results in the accumulation of excessive quantities of MHCII in the plasma membrane, and the resulting disruption to lipid rafts and the tetraspanin web leads to significant impairment in the ability of DCs to engage and activate thymocytes for Treg cell differentiation. Thus, ubiquitin-dependent MHCII turnover represents a novel quality-control mechanism by which DCs maintain homeostasis of membrane domains that support DC's Treg cell-selecting function

    Non-randomized comparison between revascularization and deferral for intermediate coronary stenosis with abnormal fractional flow reserve and preserved coronary flow reserve.

    Get PDF
    Limited data are available regarding comparative prognosis after percutaneous coronary intervention (PCI) versus deferral of revascularization in patients with intermediate stenosis with abnormal fractional flow reserve (FFR) but preserved coronary flow reserve (CFR). From the International Collaboration of Comprehensive Physiologic Assessment Registry (NCT03690713), a total of 330 patients (338 vessels) who had coronary stenosis with FFR ≤ 0.80 but CFR > 2.0 were selected for the current analysis. Patient-level clinical outcome was assessed by major adverse cardiac events (MACE) at 5 years, a composite of all-cause death, target-vessel myocardial infarction (MI), or target-vessel revascularization. Among the study population, 231 patients (233 vessels) underwent PCI and 99 patients (105 vessels) were deferred. During 5 years of follow-up, cumulative incidence of MACE was 13.0% (31 patients) without significant difference between PCI and deferred groups (12.7% vs. 14.0%, adjusted HR 1.301, 95% CI 0.611-2.769, P = 0.495). Multiple sensitivity analyses by propensity score matching and inverse probability weighting also showed no significant difference in patient-level MACE and vessel-specific MI or revascularization. In this hypothesis-generating study, there was no significant difference in clinical outcomes between PCI and deferred groups among patients with intermediate stenosis with FFR ≤ 0.80 but CFR > 2.0. Further study is needed to confirm this finding.Clinical Trial Registration: International Collaboration of Comprehensive Physiologic Assessment Registry (NCT03690713; registration date: 10/01/2018).S

    Overexpression of Chitinase 3-Like 1/YKL-40 in Lung-Specific IL-18-Transgenic Mice, Smokers and COPD

    Get PDF
    We analyzed the lung mRNA expression profiles of a murine model of COPD developed using a lung-specific IL-18-transgenic mouse. In this transgenic mouse, the expression of 608 genes was found to vary more than 2-fold in comparison with control WT mice, and was clustered into 4 groups. The expression of 140 genes was constitutively increased at all ages, 215 genes increased gradually with aging, 171 genes decreased gradually with aging, and 82 genes decreased temporarily at 9 weeks of age. Interestingly, the levels of mRNA for the chitinase-related genes chitinase 3-like 1 (Chi3l1), Chi3l3, and acidic mammalian chitinase (AMCase) were significantly higher in the lungs of transgenic mice than in control mice. The level of Chi3l1 protein increased significantly with aging in the lungs and sera of IL-18 transgenic, but not WT mice. Previous studies have suggested Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. However, IL-13 gene deletion did not reduce the level of Chi3l1 protein in the lungs of IL-18 transgenic mice. Based on our murine model gene expression data, we analyzed the protein level of YKL-40, the human homolog of Chi3l1, in sera of smokers and COPD patients. Sixteen COPD patients had undergone high resolution computed tomography (HRCT) examination. Emphysema was assessed by using a density mask with a cutoff of −950 Hounsfield units to calculate the low-attenuation area percentage (LAA%). We observed significantly higher serum levels in samples from 28 smokers and 45 COPD patients compared to 30 non-smokers. In COPD patients, there was a significant negative correlation between serum level of YKL-40 and %FEV1. Moreover, there was a significant positive correlation between the serum levels of YKL-40 and LAA% in COPD patients. Thus our results suggest that chitinase-related genes may play an important role in establishing pulmonary inflammation and emphysematous changes in smokers and COPD patients
    corecore