20 research outputs found

    Design of Hypervelocity-Impact Damage Evaluation Technique Based on Bayesian Classifier of Transient Temperature Attributes

    Get PDF
    With the rapid increasement of space debris on earth orbit, the hypervelocity-impact (HVI) of space debris can cause some serious damages to the spacecraft, which can affect the operation security and reliability of spacecraft. Therefore, the damage detection of the spacecrafts has become an urgent problem to be solved. In this paper, a method is proposed to detect the damage of spacecraft. Firstly, a variable-interval method is proposed to extract the effective information from the infrared image sequence. Secondly, in order to mine the physical meaning of the thermal image sequence, five attributes are used to construct a feature space. After that, a Naive Bayesian classifier is established to mine the information of different damaged areas. Then, a maximum interclass distance function is used choose the representative of each class. Finally, in order to visualize damaged areas, the Canny operator is used to extract the edge of the damage. In the experiment, ground tests are used to simulate hypervelocity impacts in space. Historical data of natural damaged material and artificial damaged material are used to build different classifiers. After that, the effective of classifiers is illustrated by accuracy, F-score and AUC. Then, two different types of materials are detected by proposed method, Independent Component Analysis (ICA) and Fuzzy C-means (FCM). The results show that the proposed method is more accurate than other methods

    Cu^{2+}-Chelating Mesoporous Silica Nanoparticles for Synergistic Chemotherapy/Chemodynamic Therapy

    Get PDF
    In this study, a pH-responsive controlled-release mesoporous silica nanoparticle (MSN) formulation was developed. The MSNs were functionalized with a histidine (His)-tagged targeting peptide (B3int) through an amide bond, and loaded with an anticancer drug (cisplatin (CP)) and a lysosomal destabilization mediator (chloroquine (CQ)). Cu2+ was then used to seal the pores of the MSNs via chelation with the His-tag. The resultant nanoparticles showed pH-responsive drug release, and could effectively target tumor cells via the targeting effect of B3int. The presence of CP and Cu2+ permits reactive oxygen species to be generated inside cells; thus, the chemotherapeutic effect of CP is augmented by chemodynamic therapy. In vitro and in vivo experiments showed that the nanoparticles are able to effectively kill tumor cells. An in vivo cancer model revealed that the nanoparticles increase apoptosis in tumor cells, and thereby diminish the tumor volume. No off-target toxicity was noted. It thus appears that the functionalized MSNs developed in this work have great potential for targeted, synergistic anticancer therapies

    First Report of a Foodborne Salmonella enterica Serovar Gloucester (4:i:l,w) ST34 Strain Harboring blaCTX–M–55 and qnrS Genes Located in IS26-Mediated Composite Transposon

    Get PDF
    Extended-spectrum ÎČ-lactamases (ESBLs) production and (fluoro)quinolone (FQ) resistance among Salmonella pose a public health threat. The objective of this study was the phenotypic and genotypic characterization of an ESBL-producing and nalidixic acid-resistant Salmonella enterica serovar Gloucester isolate (serotype 4:i:l,w) of sequence type 34 (ST34) from ready-to-eat (RTE) meat products in China. Whole-genome short and long read sequencing (HiSeq and MinION) results showed that it contained blaCTX–M–55, qnrS1, and tetB genes, with blaCTX–M–55 and qnrS1 located in chromosomal IS26-mediated composite transposon (IS26–qnrS1–IS3–Tn3–orf–blaCTX–M–55–ISEcp1–IS26). The same genetic structure was found in the chromosome of S. enterica subsp. enterica serovar Typhimurium strain and in several plasmids of Escherichia coli, indicating that the IS26-mediated composite transposon in the chromosome of S. Gloucester may originate from plasmids of E. coli and possess the ability to disseminate to Salmonella and other bacterial species. Besides, the structural unit qnrS1–IS3–Tn3–orf–blaCTX–M–55 was also observed to be linked with ISKpn19 in both the chromosomes and plasmids of various bacteria species, highlighting the contribution of the insertion sequences (IS26 and ISKpn19) to the co-dissemination of blaCTX–M–55 and qnrS1. To our knowledge, this is the first description of chromosomal blaCTX–M–55 and qnrS in S. Gloucester from RTE meat products. Our work expands the host range and provides additional evidence of the co-transfer of blaCTX–M–55 and qnrS1 among different species of Salmonella through the food chain

    An egg holders-inspired structure design for large-volume-change anodes with long cycle life

    Get PDF
    Abstract(#br)Silicon has been considered as a potential alternative of anodes for advanced lithium ion battery as it possesses high capacity and abundance. However, it encounters excessive volume expansion and inferior electoral conductivity, which imposes restrictions on its further development. In order to address these two problems, yolk-shell structure is employed, in which there is a suitable void for the expansion with a shell to protect the core and promote the conductivity. Here, by the inspiration from the egg holders and inverse-opal structure, an egg-stacking-like Si/C composite (ES) anode with spherical air holes was fabricated to gather the yolk-shell particles in a 3D carbon network with abundant channels allowing electrolyte to enter the material, which can facilitate the cycling performance. The half-cell battery assembled with these anodes presents high capacity and good rate performance, with a capacity reduction of only 2–7% per current density. And the cycling performance of ES anode is also praiseworthy that it delivers a high reversible discharge capacity of 2175 mAh g −1 after 300 cycles at 0.5 A g −1 . This kind of structure design is expected to be applicative for most of large-volume-change anodes

    The Effect of Temozolomide/Poly(lactide-co-glycolide) (PLGA)/Nano-Hydroxyapatite Microspheres on Glioma U87 Cells Behavior

    Get PDF
    In this study, we investigated the effects of temozolomide (TMZ)/Poly (lactide-co-glycolide)(PLGA)/nano-hydroxyapatite microspheres on the behavior of U87 glioma cells. The microspheres were fabricated by the “Solid/Water/Oil” method, and they were characterized by using X-Ray diffraction, scanning electron microscopy and differential scanning calorimetry. The proliferation, apoptosis and invasion of glioma cells were evaluated by MTT, flow cytometry assay and Transwell assay. The presence of the key invasive gene, αVÎČ3 integrin, was detected by the RT-PCR and Western blot method. It was found that the temozolomide/PLGA/nano-hydroxyapatite microspheres have a significantly diminished initial burst of drug release, compared to the TMZ laden PLGA microspheres. Our results suggest they can significantly inhibit the proliferation and invasion of glioma cells, and induce their apoptosis. Additionally, αVÎČ3 integrin was also reduced by the microspheres. These data suggest that by inhibiting the biological behavior of glioma cells in vitro, the newly designed temozolomide/PLGA/nano-hydroxyapatite microspheres, as controlled drug release carriers, have promising potential in treating glioma

    Nanomaterials Respond to Lysosomal Function for Tumor Treatment

    No full text
    The safety and efficacy of tumor treatment are difficult problems to address. Recently, lysosomes have become an important target for tumor treatment because of their special environment and function. Nanoparticles have unique physicochemical properties which have great advantages in tumor research. Therefore, in recent years, researchers have designed various types of nanoparticles to treat tumors based on lysosomal function and environment. In this review, we summarize and analyze different perspectives of tumor treatment, including direct destruction of lysosomes or lysosomal escape, drug delivery by nanoparticles, response to endogenous or exogenous stimuli, and the targeting of tumor cells or other cells. We describe the advantages and disadvantages of these approaches as well as the developmental prospects in this field. We hope to provide new ideas for better tumor treatment

    The effects of short-term, long-term, and reapplication of biochar on the remediation of heavy metal-contaminated soil

    No full text
    Biochar, a cost-effective amendment, has been reported to play pivotal roles in improving soil fertility and immobilizing soil pollutants due to its well-developed porous structure and tunable functionality. However, the properties of biochar and soils can vary inconsistently after field application. This may affect the remediation of biochar on heavy metal (HM)-contaminated soil being altered. Therefore, we selected lettuce as a model crop to determine the effects of short-term, long-term, and reapplication of biochar on soil physicochemical properties, microbial community, HM bioavailability, and plant toxicity. Our investigation revealed that the long-term application of biochar remarkably improved soil fertility, increased the relative abundance of the phylum Proteobacteria which was highly resistant to HMs, and reduced the abundance of phylum Acidobacteria. These changes in soil properties decreased the accumulation of Cd and Pb in lettuce tissues. The short- and long-term applications of biochar had no substantial effects on biomass, quality, and photosynthesis of lettuce. Moreover, the short-term and reapplication of biochar had no significant effects on soil bacterial communities but decreased the accumulation of Cd and Pb in lettuce tissues. It showed that the changes in the physical, chemical, and biological properties of soil after long-term application of biochar promoted the remediation of HM-contaminated soil. Furthermore, microbial community compositions varied with metal stress and biochar application, while the relative abundance of the phylum Actinobacteria in HM-contaminated soil with long-term biochar application was markedly higher than in HM-contaminated soil without biochar application
    corecore