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ABSTRACT With the rapid increasement of space debris on earth orbit, the hypervelocity-impact (HVI) of
space debris can cause some serious damages to the spacecraft, which can affect the operation security and
reliability of spacecraft. Therefore, the damage detection of the spacecrafts has become an urgent problem
to be solved. In this paper, a method is proposed to detect the damage of spacecraft. Firstly, a variable-
interval method is proposed to extract the effective information from the infrared image sequence. Secondly,
in order to mine the physical meaning of the thermal image sequence, five attributes are used to construct
a feature space. After that, a Naive Bayesian classifier is established to mine the information of different
damaged areas. Then, a maximum interclass distance function is used choose the representative of each
class. Finally, in order to visualize damaged areas, the Canny operator is used to extract the edge of the
damage. In the experiment, ground tests are used to simulate hypervelocity impacts in space. Historical data
of natural damaged material and artificial damaged material are used to build different classifiers. After that,
the effective of classifiers is illustrated by accuracy, F-score and AUC. Then, two different types of materials
are detected by proposed method, Independent Component Analysis (ICA) and Fuzzy C-means (FCM). The
results show that the proposed method is more accurate than other methods.

INDEX TERMS Damage evaluation, transient temperature attributes, hypervelocity impact, Bayesian
classifier.

I. INTRODUCTION
In recent years, more and more rockets, satellites and probes
are launched into the earth’s orbit [1], [2]. Collisions or explo-
sions of these objects have caused a great deal of fragments
in all kinds of sizes and shapes and over the years [3], [4].
In recent years, the HVI risk from meteoroid/orbital debris
(M/OD) has become one of the main threats to space
activities [5], [6], as displayed in Figures1-2. Due to the
randomness of M/OD impact events, the impact parameters

The associate editor coordinating the review of this manuscript and

approving it for publication was Xin Luo .

are unpredictable [7]–[9]. To guarantee that M/OD risk
assessments are applied for spacecrafts, some effective
nondestructive testing technologies should be evaluated for
the M/OD impact damages.

Infrared thermography method would be an effective
method for damage detection, since that it is a widely applied
NDT method with short detection time and does not require
direct contact with the specimen [12], [13]. In the process of
detection, the distribution of the Joule heat can be affected
by the location of the damages. It is common that the high
Joule heat leads to high temperature areas and the low Joule
heat leads to low temperature areas [14]. After that, infrared
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FIGURE 1. Development of space debris environment in [5].

FIGURE 2. The probability of spacecraft failure in [5].

camera is used to record the thermal image sequence of
specimen and the damage information can be obtained by
image sequence.

Recently, there are many algorithms in extracting the dam-
age feature of thermal image sequence, such as independent
components analysis (ICA) [15], [16], principal components
analysis (PCA) [17], [19]. Both of them focus on the process-
ing of the thermal image sequence. Specifically, ICA in [18]
is mainly used to extract the information of surface defects.
PCA is applied in [19] to extract the different damage types.
Recently, the other researches [20]–[22] studied how to exact
the damage information by classifying temperature points of
different regions in the image sequence. To search the rep-
resentative temperature points, the works [20]–[22] adopted
K-means and FCM algorithm to distinguish the temperature
changes in different positions. These methods in [20]–[22]
do not apply target attributes, rather they classify the dataset
by using similarity measures [30]. In addition, these methods
are not suitable for noisy high-dimensional data [31] and it is
hard to know which clustering model is correct and which is
the best [32]. Actually, it can be found that the temperature
variation of each pixel in the image sequence can be described
by some physical attributes, such as temperature change rate,
energy, etc. The data set of attributes distribution can be
established by mining the physical attributes of historical
data. It could be used to build the probabilistic-expression

of any physical attribute to be divided in different damage
regions. In order to reduce the influence of noise on the divi-
sion of TTRs and to divide the TTRs by physical attributes,
the Bayesian theory is investigated. Naive Bayesian classi-
fier (NB), which assumes that each attribute is conditional
independence and has the same impact on the classification,
is an effective way to extract the main information. The
Bayesian classifier as a data classification method has been
developed to calculate probability of category differentiation
in a series of practical problems [23]–[25]. For example,
Da Silva et al. [25] use NB for detection of transmission line
damage. In [24], it is used for detecting the welded joints
based on vibration signals. Thus, it should be a good solution
that developing a NB classifier for HVI damage detection,
while considering how to classify temperature points of dif-
ferent regions more accurately.

This paper proposes transient temperature attributes to
describe the thermal image sequence of the HVI damage
evaluation.Moreover, the five transient temperature attributes
are applied to build the feature space of the impact evaluation.
With the help of the feature space, a variable-interval method
is established to seek TTRs from the thermal image sequence.
A Bayesian classifier of transient temperature attributes is
further built to classify the searched TTRs, to distinguish
the temperature changes in different positions. Moreover,
the most effective TTRs of different regions can be deter-
mined by a maximum-interclass distance function, to make
the damage evaluation more efficient. To make the result
visible, the Canny operator [26], [27] is used to extract the
edge of the images. In the experiment, two types of aerospace
materials with impact damage and artificial damage are uti-
lized to verify the effectiveness and accuracy of the developed
method. The main works of this paper are listed as follows:
1) A detection framework for HVI damage assessment is
proposed. 2) Some physical features to fully exploit the fea-
tures to TTR are proposed. 3) A Bayesian classifier is built
through the features of TTR, which improves the accuracy of
traditional methods.

II. DETECTION FRAMEWORK
Space debris with different size cause varying degrees of
impact damage on spacecraft [5]: the ground-based radars or
optical-sensor systems can follow the trail of the large-size
M/OD objects fromm to cm scales, to avoid the impact events
of spacecraft. However, the small-size M/OD in mm and
µ scales cannot be monitored, so the hypervelocity impacts
become inevitable and more dangerous because that the num-
ber of small-size M/OD is very high. Obviously, the damage
evaluation is very important in the impact risk assessment
of M/OD accordingly. Therefore, it should be valuable to
evaluate the M/ODHVI damages with a few of effective non-
destructive testing methods, which could be also necessary
for the M/OD protection design and the ground HVI test for
various spacecrafts.

The infrared thermal imaging technology is a fast, conve-
nient and non-contact method that can be used to determine
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FIGURE 3. Infrared thermography defect detection system.

hypervelocity impact damage by recording heat distribution
in different areas. In this study, a detection framework based
on infrared technology, which does not cause secondary
material damage, is proposed to detect the damage of space-
craft material. The infrared technology is considered to be a
fast and efficient tool for spacecraft damage detection. It can
effectively record the heat distribution of the material, and
these collected data can be called the thermal image sequence.
An infrared thermography defect detection system is shown
in Figure 3. The signal generator is used to generate the
excitation signal, which is a small period of high frequency
current. It is applied to drive the flash excitation equipments
on the material. Then, the flash excitation equipments will
induce light energy and generate heat in the material. Finally,
an infrared camera is used to collect the heat distribution of
the material.

In general, the image sequence can be represented by a
three-dimensional matrix block (S ∈ RNI×NJ×NT ), where
NI ×NJ represents the size of each image and NT represents
the number of frames. In the image sequence, each pixel
counts the temperature change of the corresponding location
of the material. The temperature changes of each pixel is
defined as the temperature transient response (TTR). The
typical TTRs are shown in Figure 4. Since media in differ-
ent damaged areas are different, the heat transfer process
is different and this can cause the differences of TTRs in
different damaged areas. Hence, different damaged areas can
be identified by judging the difference of TTRs.

As shown in Figure 5, this detection framework mainly
contains three steps. In order to remove redundant TTRs,
a variable-interval method is proposed. In order to judge
TTRs in different damaged areas, some attributes are pro-
posed to mine the physical features of TTRs, and then
a Bayesian classifier is built based on physical attributes.
Finally, in order to realize damage visualization, a maximum
interclass distance function is used to select representatives

FIGURE 4. The differences of TTRs.

to reconstruct damage images and the Canny operator is used
to measure the edge information. Finally, we can assess the
damage of the material by these images.

III. PROPOSED METHOD
This section will introduce the proposed detection framework
in the following.

A. VARIABLE-INTERVAL METHOD
In the collected infrared image sequences, there are many
TTRs with little difference. Obviously, these redundant
TTRs can affect the efficiency of the detection frame-
work. As shown in Figure 6, blue and red area represents
non-damaged and damaged area respectively. TTRs are taken
from different areas (that is, TTR1 and TTR2 are taken from
the non-damaged area, TTR3 and TTR4 are taken from the
damaged region). They are further drawn in the coordinates.
It can be found that TTRs in the same area are similar
(TTR1 is similar as TTR2, TTR3 is similar as TTR4). More-
over, these similar redundant TTRs can cause repeated com-
putation in the classifier. Hence, a variable-interval method
is proposed to extract the effective information of the image
sequence. The method comprises the following steps:
Step 1: Input S ∈ RNI×NJ×NT and define the temper-

ature change rate (TCR) V (i, j) = S(i,j,tmid )−S(i,j,t0)
tmid−t0

. The
global TCR can be represented by S(I∗, J∗, :), where I∗ =
argmax

i
V (i, j), J∗ = argmax

j
V (i, j). Then, search the

global maximum temperature S(I∗, J∗,T ∗) from S(I∗, J∗, :),
in which T ∗ = argmax

t∈[1,NT ]
S(I∗, J∗, t).

Step 2: Set the temperature T (q), q = 1, . . . ,Q to
divide the column of S(I∗, J∗,T ∗) into Q + 1 data blocks.
Then, calculate the TCR of the TTRs in the vth block, i.e.
V v(i, J∗) = Sv(i,J∗,tmid )−Sv(i,J∗,t0)

tmid−t0
, where v = 1, . . . ,Q + 1.

After that, the Pearson correlation coefficient RevRL is calcu-
lated between Sv(I v∗, J∗, :) and each TTR in the vth block,
where I v∗ = argmax

i
(V v(i, J∗)). Start the search from both

sides of Sv(I v∗, J∗, :); if RevRL ≥ Th
v
RL , then RL

v
= RLv + 1,

until RevRL < ThvRL , where Th
v
RL represents the correlation

threshold, and RLv is the row interval, which is initialized
to 0. Then, go to Step 3.
Step 3: Set the temperature T (p), p = 1, . . . ,P to divide

the row of S(I∗, J∗,T ∗) intoP+1 data blocks. Then, calculate
the TCR of the TTRs in the uth block, i.e. V u(I∗, j) =
Sv(I∗,j,tmid )−Sv(I∗,j,t0)

tmid−t0
, where u = 1, . . . ,P+1. Next, compute
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FIGURE 5. The detection framework.

FIGURE 6. Redundant TTRs.

the PCC (ReuCL) between S
u(I∗, Ju∗, :) and each TTR in the

uth block, where Ju∗ = argmax
j

(V u(I∗, j)). Start the search

from both sides of Su(I∗, Ju∗, :); if ReuCL ≥ ThuCL , then
CLu = CLu + 1, until ReuCL < ThuCL , where Th

u
CL represents

the correlation threshold, and CLu is the row interval, which
is initialized to 0. Then, go to Step 4.
Step 4: Initialize k = 1 and setX (:, 1) = S(I∗, J∗, :). Then,

compute the Pearson correlation coefficient Re between X (:
, k) and S(i, j, :), where i = 1 : nv · RLv : 1 + nQ+1 · RLQ+1

and j = 1 : mu ·CLu : 1+mP+1 ·CLP+1. nv and mu represent
the maximum number of sampling points in the vth block and
the uth block respectively. If Re < Th, then k = k + 1 and set
X (:, k) = S(i, j, :), otherwise remove S(i, j, :).
Based on transient temperature attributes, the TTRs X can

be further extracted from the TTRs of the image sequence by
utilizing the proposedmethod. As shown in Figure 7, the tem-
perature change rate (TCR, V (i, j) = S(i,j,tmid )−S(i,j,t0)

tmid−t0
) is

used to find the global maximum temperature (S(I∗, J∗,T ∗)).
Then, according to S(I∗, J∗,T ∗), T (p) and T (q), S is divided
into small data block. After that, CLu and RLv are obtained
by calculating TCR (V u(i, j) and V v(i, j)) and correlation
coefficient (ReuCL and RevRL). Next, image sequence (S) is
sampled through CLu and RLv, and then Re is calculated.
Finally, the effective information is obtained.

B. BAYESIAN CLASSIFIER
After removing the redundant information, TTRs in different
damaged areas should be distinguished. In this subsection,
the prior information is used to establish a Bayesian classifier
and the classifier is used to judge TTRs in different damaged
areas.

1) FEATURE EXTRACTION
TTRs are different in different areas since thermal media are
different in different types of damaged areas, and they can
be described by some physical features through observation.
Hence, some physical features are proposed in this subsection
to extract the characteristics of the TTR, and these attributes
are quantified as follows:

1. Energy (E)

E i =
∥∥∥X i∥∥∥2

2
= x i1

2
+ x i2

2
+ . . .+ x iNT

2
, (1)

where X i =
(
x i1, x

i
2, . . . , x

i
NT

)
represents the ith TTR.

2. TCR during endothermic process (Vup)

V i
up
= tanαi =

x itmid − x
i
t0

tmid − t0
, (2)

where the endothermic process is from t0 to tmid . α repre-
sents the angle between the horizontal direction and the line
between x it0 and x

i
tmid .

3. TCR during the exothermic process (Vdown)

V i
down
= tanβi =

x itmid − x
i
NT

NT − tmid
, (3)

where β represents the angle between the horizontal direction
and the line between x itmid and x

i
NT .

4. Mean temperature (Tave)

T iave =

∑NT
t=1 x

i
t

NT
. (4)

5. Maximum temperature (Tmax)

T imax = max
t=1,...,NT

x it . (5)

The corresponding TTR of damaged area (red) and the
corresponding TTR of non-damaged area (blue) are shown
in Figure 8. E is described by the shaded areas. Vup and
Vdown are displayed by the black and blue dotted line. Purple
and green dotted line are used to represent Tmax and Tave
respectively. Since that these attributes are unequal between
different areas, they can be used to build the feature space for
damage identification.

18706 VOLUME 8, 2020
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FIGURE 7. The frame of variable sampling method.

FIGURE 8. The features of TTRs.

The differences of represented TTPs exacted from TTRs
can be used to identify the damaged areas. It is worth men-
tioning that previous methods distinguish TTRs of different
areas by distance or correlation, for example, the correlation
function was proposed in our previous works [20], [21] and
FCM was applied in [22]. Although their results are reliable,
they do not make full use of the prior information. In addition,
since these methods directly process the TTR in the time
domain, the classification factors are relatively simple. These
issues may affect the accuracy of identifying damaged areas.

2) ESTABLISHMENT OF BAYESIAN CLASSIFIER
In order to improve the accuracy of damaged areas identi-
fication, Bayesian classifier is used to mine the difference
of TTRs in different areas based on the historical data. The
details are as follows:

As proposed in Section III, the transient tempera-
ture attributes can be used to describe TTPs. There-
fore, the i-th TTP X (:, i) can be labeled by X i =(
E i,V i

up,V
i
down,T

i
ave,T

i
max

)
. In addition, ck , k = 1, 2, . . . ,K

TABLE 1. Description of feature discretization.

are used to represent the different damaged areas. Before
the construction of the Bayesian classifier, the continuous
feature values are discretized by the discretization-method
given in [28], the results are shown in Table 1. From the
Bayesian theorem, the posteriori probability is given by

p
(
ck |X i

)
=

p
(
X i|ck

)
p(ck )

p
(
X i
) , where p(X i|ck ) denotes the like-

lihood that indicates the distribution of TTR X i in different
areas. p(ck ) represents the priori probability of class ck .
Since the Bayesian classifier has the conditional inde-

pendence assumption, the likelihood is further denoted as
follows:

p
(
X i|ck

)
=p
(
E i|ck

)
· p
(
V i
up|ck

)
· p
(
V i
down|ck

)
·p
(
T iave|ck

)
· p
(
T imax|ck

)
(6)

In Bayesian classifier, the category with the greatest poste-
rior probability is considered as the category of the TTR X i,
i.e. hnb

(
X i
)
= argmax

ck∈C
p(ck |X i). Since that p(X i) have no

influence on classification, the category of X i can be further
determined by:

hnb
(
X i
)
= argmax

ck∈C
p(E i|ck ) · p(V i

up|ck ) · p(V
i
down|ck )

·p(T iave|ck ) · p(T
i
max|ck ) · p(ck ) (7)
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FIGURE 9. Bayesian framework.

where p(X i|ck ) and p(ck ) can be trained from historical data.
hnb

(
X i
)
represents the final category of Xi.

The developed algorithm replaces the previous classifica-
tion methods by building the Bayesian classifier of transient
temperature attributes. Since the Bayesian classifier is estab-
lished by historical data as shown in Figure 9, the accuracy
of the algorithm can be improved by applying the addition of
prior information.
Remark 1: Since the damage assessment of HVI research

is in its infancy, we don’t have a large number of data. In addi-
tion, since that we need to detect the damage of spacecraft
when it is in the orbit, the detection method should solve
the problem quickly and efficiently. Some methods, such as,
Random forest (RF), Deep learning, require a large number
of samples to build up the classifier. Some methods, such
as, Support Vector Machine (SVM), need a large number of
iterations in the classification process, which makes some of
these methods have low efficiency. Hence, these methods are
not suitable for the damage assessment of HVI in the current.
However, Bayesian classifier is a probabilistic method which
can classify data quickly and efficiently. It has such steady
theory basis and simple calculation. Hence, Bayesian classi-
fier is firstly adopted to classify TTRs in the paper.

C. VISUALIZATION
To detect the damages of the hypervelocity impact damage
and visualize the results, the detection process is shown
in Table. 2:
In Step a), the global maximum temperature S(I∗, J∗,T ∗)

is selected by the TCR V (i, j) = S(i,j,tmid )−S(i,j,t0)
tmid−t0

. CLu,
RLv are obtained to sample the image sequence. After that,
the effective information of the thermal image matrix S
is extracted by correlation comparison between sampling
TTRs. In Step b), the classified information in different areas
is mined by the developed Bayesian classifier established
based on transient temperature attributes (E , Vup, Vdown,
Tave, Tmax). Step c) finds the regional center of each area X

ck
m

by calculating the mean, and then selects the representative
TTR X ckre of each category through the maximum-between-
cluster-distance decision function. Step d) inverts damage
image by solving linear model L = Ĝ ∗ AT , and then

TABLE 2. The process of detection method.

uses Canny operator to realize damage visualization. For the
damage image, the image noise is removed by Gaussian filter

h̄ (l, h, σ ) =
exp

(
−
l2+h2

2σ2

)
2πσ . Then the gradient operators Gx =

g (l, h) − g (l + 1, h+ 1), Gy = g (l + 1, h) − g (l, h+ 1)
are used to obtain the gradient amplitude G (l, h) = |Gl | +
|Gh|. Finally, the damage edge is extracted by comparing the
high and low threshold Hth, Lth with the gradient amplitude
G (l, h), where g represents the de-noised image.
Remark 2: The detection of spacecraft materials plays an

important role in the aerospace field. The method proposed
in this paper uses the infrared image sequence to detect
the damage of the material in a non-destructive way. The
main steps of the proposed method are as follows: Firstly,
a variable-interval method is proposed to extract effective
information from image sequence. Hence, the efficiency of
the method can be improved. The details are explained in
Section III-A. Secondly, TTRs are described by establish-
ing physical attributes (E , Vup, Vdown, Tave, Tmax). After
that, Bayesian classifier is used to judge TTRs in different
damaged areas. The details are explained in Section III-B.
Thirdly, the damage of the material is clearly shown with
images. In addition, the Canny operator is applied to extract
the texture of the damage, and this can lay the foundation for
quantifying damage in the future.

IV. EXPERIMENTAL RESULTS
A. THE ESTABLISHMENT OF THE DETECTION
FRAMEWORK
For the material with impact damage in Figure 12(a),

In this section, the detection framework is applied to detect
materials of two types of damage (i.e. artificial damage,
natural damage). It is worth mentioning that the test pieces in
the figure are two different materials(that is, ceramic material
and aluminum material). Since the difference in thermal con-
ductivity between the two materials, different NB classifiers

18708 VOLUME 8, 2020
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FIGURE 10. Hypervelocity ballistic range.

TABLE 3. The performance comparison of the classifier.

need to be built with the historical data of two materi-
als respectively. For the material with impact damage, the
Al-alloy projectiles in 83 mm are fired from a two-stage
light-gas-gun (LGG) of China Aerodynamics Research and
Development Center (CARDC) in Figure 10.
After these hypervelocity impact tests, the infrared cam-

era is applied to record the surface heat distribution of the
thermal protection materials excited thermally by halogen
lights, as shown in Figure 11. The T = 330 frames in image
sequences are collected. For thematerial with impact damage,
300 TTRs from historical data are used to train the NB.
Five attributes (E i, V i

up
, V i

down
, T i

ave
, T i

max
) are computed and

then they are used to build a NB, which can divide TTRs of
natural damage into damaged area and non-damaged area.
Finally, 156 TTRs, which are different from the 300 train
samples, are used to test the performance of NB for natural
damage detection. For the material with artificial damage
in Figure 12, the T = 240 frames in image sequences are
collected. Moreover, 200 TTRs from historical data are used
to train the NB. The establishment process is the same as that
for natural damage. Then a NB is obtained and it can used to
divide TTRs of artificial damage into two different damaged
areas and non-damaged area. Finally, 80 TTRs are used to test
the performance of NB for artificial damage detection. The
F-score, accuracy, AUC are used to evaluate the performance
of the NB, the definition of these parameters are shown in the
Appendix, the results are shown in Table 5. Through these
parameters, both natural and artificial damage information
can be mined by the NB classifiers.

B. THE APPLICATION OF THE DETECTION FRAMEWORK
Case 1: For the natural damage detection, the thresholds

are given by T (q) (T (1) = 29.0351, T (2) = 29.2742) and
T (p) (T (1) = 29.1548, T (2) = 27.9390), which divide the
row and column into 3 blocks respectively. Next, the other
thresholds are set as Th1RL = 0.99, Th2RL = 0.90, Th3RL =
0.99 Th1CL = 0.99, Th2CL = 0.93, Th3CL = 0.98, Th = 0.78.

FIGURE 11. Experimental set-up.

FIGURE 12. The material with artificial damage.

After that, the intervals of step are obtained (RL1 = 9,
RL2 = 3, RL3 = 5, CL1 = 3, CL2 = 3, CL3 = 7). Finally,
set Th = 0.78, then 301 TTRs are selected from the infrared
image sequence.

Then, NB established in Section IV-A is used to judge the
areas of 301 TTRs. Firstly, the five attributes of each TTR
are computed as follows: E i =

∥∥X i∥∥22 = x i1
2
+ . . . + x i330

2
,

V i
up =

xi100−x
i
1

100−1 , V i
down =

xi250−x
i
300

300−250 , T
i
ave =

xi1+...+x
i
330

330 , T imax =

max
t=1,...,330

x it . After this step, NB for natural damage detection

is used for classifying and the result is shown in Figure 13.
301 TTRs are divided into 2 categories, where 168 TTRs in
the non-damaged position (the blue spots) and 133 TTRs in
the damaged position (the red spots). After that, the represen-
tative TTR of each class is calculated (Section III-C, Step c))
and the results are as follows:X1

re = X2
1 ,X

2
re = X71

2 , whereX i1,
X i2 represent the TTR of the non-damaged area and damaged
area respectively. Then the representatives are used to analyze
the advantages of the proposed method.

The representative TTRs of natural damage processed by
proposed method, ICA [17], FCM [22] and the realistic
situation are shown in Figure 14 to Figure 17 respectively,
where blue curves and red curves represent TTRs in the
non-damaged area and damaged area respectively. Since the
damaged is doped with air, which has better thermal con-
ductivity, the temperature of this area changes dramatically.
By contrast, the temperature of non-damaged area changes
relatively gentle. By comparison, since all the attributes are
different, the feature space can be used for extracting the
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TABLE 4. The attribute values of different methods.

FIGURE 13. The result under Bayesian classifier.

FIGURE 14. The result of the proposed method.

FIGURE 15. The result of ICA.

information in different areas. In addition, through the com-
parison of the specific attribute values shown in Table 4,
the attribute values of the proposed method are similar to

FIGURE 16. The result of FCM.

FIGURE 17. The reality.

that of the reality. That means the result of ICA does not
have practical significance in the feature space. In addition,
the results of new method is more accurate than that of FCM
through the comparison of the results of these two methods.
Comparing with the values of these attributes in Table 4,
it can be found that the developed detection method based
on the NB classifier has better performance of seeking TTRs,
to evaluate effectively the HVI damage. In total, the proposed
attributes are effective for the extraction of the natural damage
information and the proposed method is more accurate than
ICA and FCM.

Finally, in order to visualize the damage, solving the equa-
tion in Section III-C Step d) to obtain 2-dimensional images.
The results are shown in Table 5, where the first column
contains the images and the second presents the correspond-
ing TTRs. After that, the Canny operator is used to process
Figure 18, the high threshold and the low threshold are set as
0.4 and 0.2 respectively, and the result is shown in Figure 19.
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TABLE 5. The results of method.

FIGURE 18. 2-D image information.

FIGURE 19. The outline of the damage areas.

Remark 3: Artificial-selection means that we manually
select the TTRs of different types of damages in the standard
material. These TTRs are considered as the criteria for eval-
uating different experimental results. The standard material
is a material with known damage. In the process of manually
selecting TTRs, we heat the standard material, and then find
the Artificial-selection TTRs in the infrared image sequence
corresponding to the damaged areas.
Case 2: For the artificial damage detection, set the temper-

ature thresholds as T (q) (T (1) = 30.1114, T (2) = 30.4364)
and T (p) (T (1) = 33.0704, T (2) = 34.5647). Then the
thresholds are set as follows: Th1RL = 0.9986, Th2RL =
0.9990, Th3RL = 0.9950 Th1CL = 0.9995, Th2CL = 0.9995,
Th3CL = 0.9995. After that, the interval of steps are expressed
as follows: RL1 = 1, RL2 = 7, RL3 = 5, CL1 = 5, CL2 = 3,
CL3 = 3. Finally, set Th = 0.98, then 383 TTRs are selected
from the data block.

Then, the NB for artificial damage detection is used
to identify the areas of 383 TTRs. Firstly, attributes are

FIGURE 20. The result under the Bayesian classifier.

FIGURE 21. The result of the proposed method.

FIGURE 22. The result of ICA.

calculated as follows: E i =
∥∥X i∥∥22 = x i1

2
+ . . . + x i240

2
,

V i
up =

xi185−x
i
11

185−11 ,V
i
down =

xi185−x
i
240

240−185 , T
i
ave =

xi1+...+x
i
240

240 , T imax =

max
t=1,...,240

x it . After this step, they are put into NB. The result

of the classification is shown in Figure 20, where 13 TTRs
in the non-damaged position (the blue part), 187 TTRs in
the stuffed-hole damaged area (the pink part) and 183 TTRs
in the through-hole damaged area (the red part). After that,
the representative TTR of each category is calculated and the
results are as follows X1

re = X2
1 , X

2
re = X145

2 , X3
re = X2

3 ,
where X i1, X

i
2 and X i3 represent the non-damaged category,

stuffed-hole damaged category and through-hole damaged
category respectively. Then, these TTRs are used to explain
the performance of the proposed algorithm.

The representative TTRs of artificial damage processed
by proposed method, ICA [17], FCM [22] and the realistic
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TABLE 6. The attribute values of different methods.

FIGURE 23. The result of FCM.

FIGURE 24. The reality.

situation are shown in Figures 21-24 respectively, where blue,
red and pink curves represent TTRs in the non-damaged
area, through-hole damaged area and stuffed-hole damaged
area respectively. Since the through-hole damage is doped
with more air, the temperature changes drastically in the
damaged area. However, there is no air in non-damaged area.
Thus the temperature change is relatively gentle in this area.
By contrast, since the material in the stuffed-hole damage has
a the poor thermal conductivity, the temperature changes in
this area is the most gentle. All the attributes are unequal
in different areas, that means the feature space is effective
for information extraction. As shown in Table 6, the specific
attribute values of the proposed method are similar to that
of the reality. That means the proposed method takes into
account the physical meaning of TTRs. In addition, by com-
paring the results of proposed method and that of FCM.

TABLE 7. The results of method.

Although TTR of FCM is more closer to the reality in the
non-damaged area, the results of the proposed method are
more accurate in other two damaged areas. Hence, the pro-
posed method is better than FCM. In summary, the proposed
method can mine the artificial damage information based on
attributes and the result is more accurate than ICA and FCM.

Finally, the Canny operator is used to extract the damaged
areas. The first step is to reverse 2-demensional images using
the method in Section III-C Step d). The results are shown
in Table 7. After that, the Canny operator is used to process
Figure 25, the high threshold and the low threshold are set as
0.1 and 0.05 respectively, the edges of the damages are shown
in Figure 26.
Remark 4: It should be emphasized that in the damage

assessment of HVI, we need to describe the damage in detail.
As shown in Figure 19 and Figure 26, we use Canny operator
to extract the texture distribution of the damage, and we can
clearly see the damage of different materials through the dam-
age texture information. Furthermore, we plan to quantify the
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FIGURE 25. 2-D image information.

FIGURE 26. The outline of the damage areas.

damage, such as, area, circumference, etc., using this texture
information in the future.

V. CONCLUSION
In this paper, a method for detecting HVI is proposed. In the
experiment, the NB for materials of different types of damage
are established by the historical data. For the natural damage
detection, the accuracy, F-score and AUC of NB are 91.15%,
94.23% and 0.9495 respectively. For the artificial damage
detection, the accuracy, F-score and AUC of NB are 95.00%,
95.82% and 1 respectively. Then, the proposed method is
used for hypervelocity impact damage detection. By com-
parison with the result of the proposed method, ICA and
FCM, we find that the accuracy of the proposed method is
better than that of ICA and FCM. In addition, the proposed
method is better combined with physical meaning. In total,
the detection framework is an effective way in the field of
infrared detection for hypervelocity impact.

In the future work, weakening the conditional indepen-
dence assumption of NB and selecting the appropriate classi-
fier for different data are the focus of the work. In addition,
it is worth mentioning that changes in the external environ-
ment will have a non-negligible impact on data acquisition.
Hence, we will also investigate how to investigate multiple
environments in the detection framework in future.

APPENDIX
The F-score, accuracy, AUC [23], [33] are used to evaluate the
performance, namely F = 2×macro.P×macro.R

macro.P+macro.R , Accuracy =
TP+TN

TP+TN+FN+FP , TPR =
TP

TP+FN , FPR =
FP

TN+FP where
macro.P =

∑n
i=1 Pi

/
n, macro.R =

∑n
i=1 Ri

/
n, P =

TP
/
(TP+ FP), R = TP

/
(TP+ FN ). True positive (TP)

represents TTRs belonging to damaged region correctly pre-
dicted as belonging to the damaged category. True neg-
ative (TN) represents typical TTRs correctly predicted as

belonging to the non-damaged category. False positive (FP)
represents TTRs predicted as non-damaged category which
real belong to damaged category. False negative (FN) rep-
resent typical TTRss predicted as damaged category which
come from non-damaged category. FPR and TPR are the
horizontal and vertical coordinates of the ROC respectively.
AUC is the area value below the ROC curve.
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