534 research outputs found

    Genetics of CM-proteins (A-hordeins) in barley

    Full text link
    The CM-proteins, which are the main components of the A-hordeins, include four previously described proteins (CMa-1, CMb-1, CMc-1, CMd-1), plus a new one, CMe-1, which has been tentatively included in this group on the basis of its solubility properties and electrophoretic mobility. The variability of the five proteins has been investigated among 38 Hordeum vulgare cultivars and 17 H. spontaneum accessions. Proteins CMa-1, CMc-1 and CMd-1 were invariant within the cultivated species; CMd was also invariant in the wild one. The inheritance of variants CMb-1/CMb-2 and CMe-1/CMe-2,2 was studied in a cross H. spontaneum x H. vulgare. The first two proteins were inherited as codominantly expressed allelic variations of a single mendelian gene. Components CMe-2,2 were jointly inherited and codominantly expressed with respect to CMe-1. Gene CMb and gene(s) CMe were found to be unlinked. The chromosomal locations of genes encoding CM-proteins were investigated using wheat-barley addition lines. Genes CMa and CMc were associated with chromosome 1, and genes CMb and CMd with chromosome 4. These gene locations further support the proposed homoeology of chromosomes 1 and 4 of barley with chromosomes groups 7 and 4 of wheat, respectively. Gene(s) CMe has been assigned to chromosome 3 of barley. The accumulation of protein CMe-1 is totally blocked in the high lysine mutant Riso 1508 and partially so in the high lysine barley Hiproly

    SpikeletFCN: Counting Spikelets from Infield Wheat Crop Images Using Fully Convolutional Networks

    Get PDF
    Currently, crop management through automatic monitoring is growing momentum, but presents various challenges. One key challenge is to quantify yield traits from images captured automatically. Wheat is one of the three major crops in the world with a total demand expected to exceed 850 million tons by 2050. In this paper we attempt estimation of wheat spikelets from high-definition RGB infield images using a fully convolutional model. We propose also the use of transfer learning and segmentation to improve the model. We report cross validated Mean Absolute Error (MAE) and Mean Square Error (MSE) of 53.0, 71.2 respectively on 15 real field images. We produce visualisations which show the good fit of our model to the task. We also concluded that both transfer learning and segmentation lead to a very positive impact for CNN-based models, reducing error by up to 89%, when extracting key traits such as wheat spikelet counts

    Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding

    Get PDF
    Bread wheat quality is mainly correlated with high molecular weight glutenin subunits (HMW-GS) of endosperm. The number of HMW-GS alleles with good processing quality is limited in bread wheat cultivars, while there are plenty of HMW-GS alleles in wheat-related grasses to exploit. We report here on the cloning and characterization of HMW-GS alleles from the decaploid Agropyron elongatum. Eleven novel HMW-GS alleles were cloned from the grass. Of them, five are x-type and six y-type glutenin subunit genes. Three alleles Aex4, Aey7, and Aey9 showed high similarity with another three alleles from the diploid Lophopyrum elongatum, which provided direct evidence for the Ee genome origination of A. elongatum. It was noted that C-terminal regions of three alleles of the y-type genes Aey8, Aey9, and Aey10 showed more similarity with x-type genes than with other y-type genes. This demonstrates that there is a kind of intermediate state that appeared in the divergence between x- and y-type genes in the HMW-GS evolution. One x-type subunit, Aex4, with an additional cysteine residue, was speculated to be correlated with the good processing quality of wheat introgression lines. Aey4 was deduced to be a chimeric gene from the recombination between another two genes. How the HMW-GS genes of A. elongatum may contribute to the improvement of wheat processing quality are discussed

    Characterization of cDNA clones of the family of trypsin/α-amylase inhibitors (CM-proteins) in barley (Hordeum vulgare L.)

    Get PDF
    Recombinants encoding members of the trypsin/-amylase inhibitors family (also designated CM-proteins) were selected from a cDNA library prepared from developing barley endosperm. Inserts in two of the clones, pUP-13 and pUP-38, were sequenced and found to encode proteins which clearly belong to this family, as judged from the extensive homology of the deduced sequences with that of the barley trypsin inhibitor CMe, the only member of the group for which a complete amino acid sequence has been obtained by direct protein sequencing. These results, together with previously obtained N-terminal sequences of purified CM-proteins, imply that there are at least six different members of this dispersed gene family in barley. The relationship of this protein family to the B-3 hordein and to reserve prolamins from related species is discussed in terms of their genome structure and evolution

    A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients

    Get PDF
    The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences

    The wheat ω-gliadin genes: structure and EST analysis

    Get PDF
    A survey and analysis is made of all available ω-gliadin DNA sequences including ω-gliadin genes within a large genomic clone, previously reported gene sequences, and ESTs identified from the large wheat EST collection. A contiguous portion of the Gli-B3 locus is shown to contain two apparently active ω-gliadin genes, two pseudogenes, and four fragments of the 3′ portion of ω-gliadin sequences. Comparison of ω-gliadin sequences allows a phylogenetic picture of their relationships and genomes of origin. Results show three groupings of ω-gliadin active gene sequences assigned to each of the three hexaploid wheat genomes, and a fourth group thus far consisting of pseudogenes assigned to the A-genome. Analysis of ω-gliadin ESTs allows reconstruction of two full-length model sequences encoding the AREL- and ARQL-type proteins from the Gli-A3 and Gli-D3 loci, respectively. There is no DNA evidence of multiple active genes from these two loci. In contrast, ESTs allow identification of at least three to four distinct active genes at the Gli-B3 locus of some cultivars. Additional results include more information on the position of cysteines in some ω-gliadin genes and discussion of problems in studying the ω-gliadin gene family

    Role of Conserved Non-Coding Regulatory Elements in LMW Glutenin Gene Expression

    Get PDF
    Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types

    Cloning of cDNA and chromosomal location of genes encoding the three types of subunits of the wheat tetrameric inhibitor of insect a-amylase

    Get PDF
    We have characterized three cDNA clones corresponding to proteins CM1, CM3 and CM16, which represent the three types of subunits of the wheat tetrameric inhibitor of insect -amylases. The deduced amino acid sequences of the mature polypeptides are homologous to those of the dimeric and monomeric -amylase inhibitors and of the trypsin inhibitors. The mature polypeptides are preceded by typical signal peptides. Southern blot analysis of appropriate aneuploids, using the cloned cDNAs as probes, has revealed the location of genes for subunits of the CM3 and of the CM16 type within a few kb of each other in chromosomes 4A, 4B and 4D, and those for the CM1 type of subunit in chromosomes 7A, 7B and 7D. Known subunits of the tetrameric inhibitor corresponding to genes from the B and D genomes have been previously characterized. No proteins of this class have been found to be encoded by the A genome in hexaploid wheat (genomes AA, BB, DD) or in diploid wheats (AA) and no anti -amylase activity has been detected in the latter, so that the A-genome genes must be either silent (pseudogenes) or expressed at a much lower level
    corecore