1,964 research outputs found
Photorealistic Style Transfer with Screened Poisson Equation
Recent work has shown impressive success in transferring painterly style to
images. These approaches, however, fall short of photorealistic style transfer.
Even when both the input and reference images are photographs, the output still
exhibits distortions reminiscent of a painting. In this paper we propose an
approach that takes as input a stylized image and makes it more photorealistic.
It relies on the Screened Poisson Equation, maintaining the fidelity of the
stylized image while constraining the gradients to those of the original input
image. Our method is fast, simple, fully automatic and shows positive progress
in making a stylized image photorealistic. Our results exhibit finer details
and are less prone to artifacts than the state-of-the-art.Comment: presented in BMVC 201
GESPAR: Efficient Phase Retrieval of Sparse Signals
We consider the problem of phase retrieval, namely, recovery of a signal from
the magnitude of its Fourier transform, or of any other linear transform. Due
to the loss of the Fourier phase information, this problem is ill-posed.
Therefore, prior information on the signal is needed in order to enable its
recovery. In this work we consider the case in which the signal is known to be
sparse, i.e., it consists of a small number of nonzero elements in an
appropriate basis. We propose a fast local search method for recovering a
sparse signal from measurements of its Fourier transform (or other linear
transform) magnitude which we refer to as GESPAR: GrEedy Sparse PhAse
Retrieval. Our algorithm does not require matrix lifting, unlike previous
approaches, and therefore is potentially suitable for large scale problems such
as images. Simulation results indicate that GESPAR is fast and more accurate
than existing techniques in a variety of settings.Comment: Generalized to non-Fourier measurements, added 2D simulations, and a
theorem for convergence to stationary poin
Deep Photo Style Transfer
This paper introduces a deep-learning approach to photographic style transfer
that handles a large variety of image content while faithfully transferring the
reference style. Our approach builds upon the recent work on painterly transfer
that separates style from the content of an image by considering different
layers of a neural network. However, as is, this approach is not suitable for
photorealistic style transfer. Even when both the input and reference images
are photographs, the output still exhibits distortions reminiscent of a
painting. Our contribution is to constrain the transformation from the input to
the output to be locally affine in colorspace, and to express this constraint
as a custom fully differentiable energy term. We show that this approach
successfully suppresses distortion and yields satisfying photorealistic style
transfers in a broad variety of scenarios, including transfer of the time of
day, weather, season, and artistic edits
Texture Mixer: A Network for Controllable Synthesis and Interpolation of Texture
This paper addresses the problem of interpolating visual textures. We
formulate this problem by requiring (1) by-example controllability and (2)
realistic and smooth interpolation among an arbitrary number of texture
samples. To solve it we propose a neural network trained simultaneously on a
reconstruction task and a generation task, which can project texture examples
onto a latent space where they can be linearly interpolated and projected back
onto the image domain, thus ensuring both intuitive control and realistic
results. We show our method outperforms a number of baselines according to a
comprehensive suite of metrics as well as a user study. We further show several
applications based on our technique, which include texture brush, texture
dissolve, and animal hybridization.Comment: Accepted to CVPR'1
Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing
We demonstrate that sub-wavelength optical images borne on
partially-spatially-incoherent light can be recovered, from their far-field or
from the blurred image, given the prior knowledge that the image is sparse, and
only that. The reconstruction method relies on the recently demonstrated
sparsity-based sub-wavelength imaging. However, for
partially-spatially-incoherent light, the relation between the measurements and
the image is quadratic, yielding non-convex measurement equations that do not
conform to previously used techniques. Consequently, we demonstrate new
algorithmic methodology, referred to as quadratic compressed sensing, which can
be applied to a range of other problems involving information recovery from
partial correlation measurements, including when the correlation function has
local dependencies. Specifically for microscopy, this method can be readily
extended to white light microscopes with the additional knowledge of the light
source spectrum.Comment: 16 page
- …