20 research outputs found

    Generating and sustaining long-lived spin states in 15N,15N′-azobenzene

    Get PDF
    Long-Lived spin States (LLSs) hold a great promise for sustaining non-thermal spin order and investigating various slow processes by Nuclear Magnetic Resonance (NMR) spectroscopy. Of special interest for such application are molecules containing nearly equivalent magnetic nuclei, which possess LLSs even at high magnetic fields. In this work, we report an LLS in trans-15N,15N′-azobenzene. The singlet state of the 15N spin pair exhibits a long-lived character. We solve the challenging problem of generating and detecting this LLS and further increase the LLS population by converting the much higher magnetization of protons into the 15N singlet spin order. As far as the longevity of this spin order is concerned, various schemes have been tested for sustaining the LLS. Lifetimes of 17 minutes have been achieved at 16.4 T, a value about 250 times longer than the longitudinal relaxation time of 15N in this magnetic field. We believe that such extended relaxation times, along with the photochromic properties of azobenzene, which changes conformation upon light irradiation and can be hyperpolarized by using parahydrogen, are promising for designing new experiments with photo-switchable long-lived hyperpolarization

    cis Versus trans-Azobenzene: Precise Determination of NMR Parameters and Analysis of Long-Lived States of 15N Spin Pairs

    Get PDF
    We provide a detailed evaluation of nuclear magnetic resonance (NMR) parameters of the cis- and trans-isomers of azobenzene (AB). For determining the NMR parameters, such as proton–proton and proton–nitrogen J-couplings and chemical shifts, we compared NMR spectra of three different isotopomers of AB: the doubly 15N labeled azobenzene, 15N,15N′-AB, and two partially deuterated AB isotopomers with a single 15N atom. For the total lineshape analysis of NMR spectra, we used the recently developed ANATOLIA software package. The determined NMR parameters allowed us to optimize experiments for investigating singlet long-lived spin states (LLSs) of 15N spin pairs and to measure LLS lifetimes in cis-AB and trans-AB. Magnetization-to-singlet-to-magnetization conversion has been performed using the SLIC and APSOC techniques, providing a degree of conversion up to 17 and 24% of the initial magnetization, respectively. Our approach is useful for optimizing the performance of experiments with singlet LLSs; such LLSs can be exploited for preserving spin hyperpolarization, for probing slow molecular dynamics, slow chemical processes and also slow transport processes

    Polychromatic Excitation of Delocalized Long-Lived Proton Spin States in Aliphatic Chains

    Full text link
    Long-lived states (LLS) involving pairs of magnetically inequivalent but chemically equivalent proton spins in aliphatic (CH2_2)n_n chains can be excited by simultaneous application of weak selective radio-frequency (RF) fields at n chemical shifts by polychromatic spin lock induced crossing (poly-SLIC). The LLS are delocalized throughout the aliphatic chain by mixing of intrapair singlet states and by excitation of LLS comprising products of four or six spins. The measured lifetimes TLLS_{LLS} in a model compound are about 5 times longer than T1, and are strongly affected by interactions with macromolecules

    Homonuclear decoupling in the <sup>13</sup>C indirect dimension of HSQC experiments for <sup>13</sup>C-enriched compounds

    No full text
    The two most compelling methods for broadband homonuclear decoupling currently available, Zangger–Sterk (ZS) and pure shift yielded by chirp excitation (PSYCHE), were successfully adapted and tested on the 13C isotope. When applied during the indirect carbon evolution in the HSQC experiment, they both entirely eliminated the extended carbon–carbon multiplet structures observed in this dimension of a non‐decoupled HSQC spectrum of 13C‐enriched cholesterol. The optimized selective pulse modulated using novel non‐equidistant scheme for multisite refocusing (ZS) and the small flip angle saltire chirps (PSYCHE) both proved to be robust and efficient in providing decoupled spectra with a sensitivity of about 25% that of the non‐decoupled HSQC spectra with improved quality compared to earlier results

    Elimination of signals tilting caused by B<sub>0</sub> field inhomogeneity using 2D-lineshape reference deconvolution

    No full text
    An efficient approach for reference deconvolution of two-dimensional spectra aiming at the correction of static field inhomogeneity was established. In comparison to known techniques, a great improvement was achieved using the cross-section along the diagonal of the reference peak instead of its full 2D line shape. The method is termed pseudo-2D diagonal deconvolution. The approach developed allows suppressing the two-dimensional peaks tilting caused by the magnetic field inhomogeneity, while keeping the signal-to-noise ratio constant. Long-known method of 2D reference deconvolution (true-2D reference deconvolution) was also applied for comparison. The neutral and resolution-enhancing pseudo-2D deconvolutions were successfully applied for the resolution of complex overlapping multiplets and for measuring small scalar coupling constants. The new algorithm for the elimination of shape distortion of two-dimensional peaks showed to be promising in the perspective of an automated analysis of 2D correlation NMR spectra

    Relayed Hyperpolarization for Zero-Field Nuclear Magnetic Resonance

    No full text
    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is a rapidly developing form of spectroscopy that drastically reduces the size and expense of portable devices with NMR capabilities. However, signal acquisition still requires a mechanism for orienting nuclear spins (e.g., generating a bulk magnetic moment for detection), and the currently employed methods only apply to a limited pool of chemicals or come at prohibitively high cost. Here, we demonstrate that the parahydrogen-based SABRE-relay method (SABRE = Signal Amplification by Reversible Exchange) can be used as a more general means of generating hyperpolarized analytes for ZULF NMR. This method is applicable to a wide range of small molecules possessing exchangeable protons, as we demonstrate here by observing zero-field J-spectra of [13C]-methanol, [1-13C]-ethanol, and [2-13C]-ethanol. We also explore the magnetic-field dependence of the proton hyperpolarization efficiency in SABRE-relay, and show the existence of a second, previously unexplored maximum at 19 mT. We further demonstrate that water does not significantly diminish SABRE-relay performance using benzylamine as polarization-transfer agent and use this to hyperpolarize ethanol extracted from a store-bought sample of vodka (1H polarization of ~0.1%). Applications for detecting trace chemical impurities and measuring J-spectra from natural extracts are also discussed
    corecore