Elimination of signals tilting caused by B<sub>0</sub> field inhomogeneity using 2D-lineshape reference deconvolution

Abstract

An efficient approach for reference deconvolution of two-dimensional spectra aiming at the correction of static field inhomogeneity was established. In comparison to known techniques, a great improvement was achieved using the cross-section along the diagonal of the reference peak instead of its full 2D line shape. The method is termed pseudo-2D diagonal deconvolution. The approach developed allows suppressing the two-dimensional peaks tilting caused by the magnetic field inhomogeneity, while keeping the signal-to-noise ratio constant. Long-known method of 2D reference deconvolution (true-2D reference deconvolution) was also applied for comparison. The neutral and resolution-enhancing pseudo-2D deconvolutions were successfully applied for the resolution of complex overlapping multiplets and for measuring small scalar coupling constants. The new algorithm for the elimination of shape distortion of two-dimensional peaks showed to be promising in the perspective of an automated analysis of 2D correlation NMR spectra

    Similar works

    Full text

    thumbnail-image

    Available Versions