31 research outputs found

    STRESS REDUCTION FOR PILLAR FILLED STRUCTURES

    Get PDF
    According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region

    Sintered Cr/Pt and Ni/Au ohmic contacts to B12P2

    Get PDF
    Citation: Frye, C. D., Kucheyev, S. O., Edgar, J. H., Voss, L. F., Conway, A. M., Shao, Q. H., & Nikolic, R. J. (2015). Sintered Cr/Pt and Ni/Au ohmic contacts to B12P2. Journal of Vacuum Science & Technology A, 33(3), 6. doi:10.1116/1.4917010Icosahedral boron phosphide (B12P2) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B12P2 for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 degrees C for 30 s with a specific contact resistance of 2 x 10(-4) Omega cm(2), as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contact resistance was similar to l-4 x 10(-4) Omega cm(2) after annealing over the temperature range of 500-800 degrees C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B12P2 at 700 degrees C and a reaction layer between Ni and B12P2 thinner than similar to 25 nm at 500 degrees C. (C) 2015 American Vacuum Society

    Experimental Realization of an Extreme-Parameter Omnidirectional Cloak

    Get PDF
    An ideal transformation-based omnidirectional cloak always relies on metamaterials with extreme parameters, which were previously thought to be too difficult to realize. For such a reason, in previous experimental proposals of invisibility cloaks, the extreme parameters requirements are usually abandoned, leading to inherent scattering. Here, we report on the first experimental demonstration of an omnidirectional cloak that satisfies the extreme parameters requirement, which can hide objects in a homogenous background. Instead of using resonant metamaterials that usually involve unavoidable absorptive loss, the extreme parameters are achieved using a nonresonant metamaterial comprising arrays of subwavelength metallic channels manufactured with 3D metal printing technology. A high level transmission of electromagnetic wave propagating through the present omnidirectional cloak, as well as significant reduction of scattering field, is demonstrated both numerically and experimentally. Our work may also inspire experimental realizations of the other full-parameter omnidirectional optical devices such as concentrator, rotators, and optical illusion apparatuses

    Oncogenic state and cell identity combinatorially dictate the susceptibility of cells within glioma development hierarchy to IGF1R targeting

    Get PDF
    Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells‐of‐origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin‐like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new‐generation brain‐penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Optimized Designs and Materials for Nanostructure Based Solar Cells

    No full text
    Nanostructure-based solar cells are attracting significant attention as possible candidates for drastic improvement in photovoltaic (PV) energy conversion efficiency. Although such solar cells are expected to be more expensive there is growing need for the efficient and light-weight solar cells in aero-space and related industries. In this dissertation I present results of the theoretical, computational and experimental investigation of novel designs for quantum dot superlattice (QDS) based PV elements and advanced materials for transparent solar cells. In the first part of the dissertation I describe possible implementation of the intermediate-band (IB) solar cells with QDS. The IB cells were predicted to have PV efficiency exceeding the Shockley-Queisser limit for a single junction cell. The parameters of QDS structure have to be carefully tuned to achieve the desired charge carrier dispersion required for the IB operation. The first-principles models were used to calculate the electrical properties and light absorption in QDS. This approach allowed me to determine the dimensions of QDS for inducing the mini-band which plays the role of the IB. Using the detailed balance theory it was determined that the upper-bound PV efficiency of such IB solar cells can be as high as ~51%. The required QDS dimensions on the basis of InAsN/GaAsSb are technologically challenging but feasible: ~2-6 nm. Using the developed simulation tools I proposed several possible designs of QDS solar cells including one, which combined the benefits of the IB concept and the advanced tandem cell design. The second part of the dissertation presents a study of graphene layers as transparent electrodes for the PV cells. The graphene layers were mechanically exfoliated from bulk graphite and characterized with micro-Raman spectroscopy. It was found that graphene electrodes have good electrical conductivity, which reveals unusual temperature dependence beneficial for the proposed application. The decrease in resistance with temperature was explained by the thermal generation of the electron-hole pairs in the conditions when the carrier mobility is limited by the defect scattering. The final part of the dissertation presents simulation results of electrical current transport in graphene ribbons, which can be used as transparent electrodes or interconnects

    STRESS REDUCTION FOR PILLAR FILLED STRUCTURES

    Get PDF
    According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region

    The nanotoxicity investigation of optical nanoparticles to cultured cells in vitro

    Get PDF
    Optical nanoparticles (NPs) have the potential to provide new tools for diagnosis and treatment of human diseases, however, their nanotoxicity and biological characteristics are still unclear. Here, we prepared a series of typical NPs (including gold nanospheres, gold nanorods, silver nanopheres, silver triangular nanoplates and quantum dots) with different material and surface chemical modification for nanotoxicity test. Cell proliferation was investigated by SRB assay where the NPs were co-cultured with cancer cells. It was found that NPs’ toxicity was highly correlated to different factors—material selection, physical size/surface area, shape, and surface chemical property, etc. This work has the potential to provide a uniform and systematic information when they are applied as probes in biological and medical fields
    corecore