35 research outputs found

    Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report

    Get PDF
    open7noopenSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, SerenaSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, Seren

    Stroke Gait Rehabilitation: A Comparison of End-Effector, Overground Exoskeleton, and Conventional Gait Training

    Get PDF
    Gait recovery is one of the main goals of post-stroke rehabilitation and Robot-Assisted Gait Training (RAGT) has shown positive outcomes. However, there is a lack of studies in the literature comparing the effects of different devices. This paper aims to study the effects, in terms of clinical and gait outcomes, of treadmill-based and overground RAGT, compared to conventional gait training in stroke subjects. The results showed a significant improvement of clinical outcomes in both robotic treatments and in conventional therapy. The performance of locomotor tasks was clinically significant in the robotic groups only. The spatio-temporal gait parameters did not reveal any significant difference. Results suggest future multicentre studies on a larger number of subjects

    Robot-assisted upper limb training for patients with multiple sclerosis: an evidence-based review of clinical applications and effectiveness

    Get PDF
    Upper extremities limitation is a common functional impairment in patients with Multiple Sclerosis (PwMS). Novel technological devices are increasingly used in neurorehabilitation to support motor function improvement and the quantitative assessment of motor performance during training in patients with neurological diseases. In this review, we systematically report the evidence on clinical applications and robotic-assisted arm training (RAT) in functional recovery in PwMS. PubMed/MEDLINE, the Cochrane Library, and the Physiotherapy Evidence Database (PEDro) databases were systematically searched from inception to March 2021. The 10-item PEDro scale assessed the study quality for the RCT, and the AMSTAR-2 was used to assess the quality of the systematic review. The 5-item Oxford CEBM scale was used to rate the level of evidence. A total of 10 studies (161 subjects) were included. The selected studies included one systematic review, four RCTs, one randomized crossover, and four case series. The RCTs were scored as high-quality studies, while the systematic review was determined to be of low quality. Shoulder range of motion, handgrip strength, and proximal arm impairment improved after RAT. Manual dexterity, arm function, and use in daily life also ameliorated arm function. The high clinical heterogeneity of treatment programs and the variety of robot devices affects the generalizability of the study results; therefore, we emphasize the need to standardize the intervention type in future studies that evaluate the role of robotic-assisted training in PwMS. Robot-assisted treatment seems safe and useful to increase manual dexterity and the quality of movement execution in PwMS with moderate to severe disability. Additional studies with an adequate sample size and methodological rigour are warranted to drive definite conclusion

    Upper limb robotic rehabilitation for patients with cervical spinal cord injury: a comprehensive review

    Get PDF
    The upper extremities limitation represents one of the essential functional impairments in patients with cervical spinal cord injury. Electromechanics assisted devices and robots are increasingly used in neurorehabilitation to help functional improvement in patients with neurological diseases. This review aimed to systematically report the evidence-based, state-of-art on clinical applications and robotic-assisted arm training (RAT) in motor and functional recovery in subjects affected by cervical spinal cord injury. The present study has been carried out within the framework of the Italian Consensus Conference on "Rehabilitation assisted by robotic and electromechanical devices for persons with disability of neurological origin" (CICERONE). PubMed/MEDLINE, Cochrane Library, and Physiotherapy Evidence Database (PEDro) databases were systematically searched from inception to September 2021. The 10-item PEDro scale assessed the study quality for the RCT and the AMSTAR-2 for the systematic review. Two different authors rated the studies included in this review. If consensus was not achieved after discussion, a third reviewer was interrogated. The five-item Oxford CEBM scale was used to rate the level of evidence. A total of 11 studies were included. The selected studies were: two systematic reviews, two RCTs, one parallel-group controlled trial, one longitudinal intervention study and five case series. One RCT was scored as a high-quality study, while the systematic review was of low quality. RAT was reported as feasible and safe. Initial positive effects of RAT were found for arm function and quality of movement in addition to conventional therapy. The high clinical heterogeneity of treatment programs and the variety of robot devices could severely affect the generalizability of the study results. Therefore, future studies are warranted to standardize the type of intervention and evaluate the role of robotic-assisted training in subjects affected by cervical spinal cord injury

    Effects of robotic upper limb treatment after stroke on cognitive patterns: A systematic review

    Get PDF
    Background: Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. Objective: To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. Methods: The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. Results: Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. Conclusion: Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation

    Training for mobility with exoskeleton robot in person with Spinal Cord Injury: a pilot study

    No full text
    Wearable robots are people-oriented robots designed to be worn all day, thus helping in the daily activities. They can assist in walking, running, jumping higher or even lifting objects too heavy in normal conditions

    Translational effects of robot-mediated therapy in subacute stroke patients: an experimental evaluation of upper limb motor recovery

    Get PDF
    Robot-mediated therapies enhance the recovery of post-stroke patients with motor deficits. Repetitive and repeatable exercises are essential for rehabilitation following brain damage or other disorders that impact the central nervous system, as plasticity permits to reorganize its neural structure, fostering motor relearning. Despite the fact that so many studies claim the validity of robot-mediated therapy in post-stroke patient rehabilitation, it is still difficult to assess to what extent its adoption improves the efficacy of traditional therapy in daily life, and also because most of the studies involved planar robots. In this paper, we report the effects of a 20-session-rehabilitation project involving the Armeo Power robot, an assistive exoskeleton to perform 3D upper limb movements, in addition to conventional rehabilitation therapy, on 10 subacute stroke survivors. Patients were evaluated through clinical scales and a kinematic assessment of the upper limbs, both pre- and post-treatment. A set of indices based on the patients’ 3D kinematic data, gathered from an optoelectronic system, was calculated. Statistical analysis showed a remarkable difference in most parameters between pre- and post-treatment. Significant correlations between the kinematic parameters and clinical scales were found. Our findings suggest that 3D robot-mediated rehabilitation, in addition to conventional therapy, could represent an effective means for the recovery of upper limb disability. Kinematic assessment may represent a valid tool for objectively evaluating the efficacy of the rehabilitation treatment

    Food Protein-Induced Enterocolitis Syndrome (FPIES) to Corn: A Case Report

    No full text
    E.S. started weaning at the age of 6 months. She ate pear homogenate (88% pear, a small amount of corn starch) and a diet consisting of vegetables, rice cream, and freeze-dried lamb (which contains a small amount of corn starch), without any evident problems. After 4 weeks, weaning was discontinued for 3 days because o

    Radial or Focal Extracorporeal Shock Wave Therapy in Lateral Elbow Tendinopathy: A Real-Life Retrospective Study

    No full text
    Lateral elbow tendinopathy (LET) is characterized by pain, poor muscle strength of the wrist ex-tensors, and disability. Among the conservative rehabilitative approaches, focal as well as radial extracorporeal shock wave therapy (ESWT), are considered effective in LET management. The objective of this study was to compare the safety and effectiveness of focal (fESWT) and radial (rESWT) in terms of LET symptoms and the strength of wrist extensors, taking into account potential gender differences. This is a retrospective longitudinal cohort study of patients with LET treated with ESWT that had received a clinical and functional evaluation, including visuo-analogic scale (VAS), muscle strength using an electronic dynamometer during Cozen’s test, and the patient-rated tennis elbow evaluation (PRTEE) questionnaire. Follow-ups were carried out weekly in four visits after enrollment, and at 8 and 12 weeks. During the follow-ups, the VAS score decreased in both treatments, even if patients receiving fESWT reported early pain relief compared to those treated with rESWT (time for treatment p-value < 0.001). Additionally, peak muscle strength increased independently of the device used, and again more rapidly in the fESWT group (time for treatment p-value < 0.001). In the stratified analysis for sex and for the type of ESWT, rESWT appears to be less effective in female participants in terms of mean muscle strength and PRTEE scores, without differences according to the type of device used. The rESWT group reported a higher rate of minor adverse events (i.e., discomfort, p = 0.03) compared to fESWT. Our data suggest that both fESWT and rESWT might be effective in improving LET symptoms, even if the higher rate of painful procedures were reported in patients treated with rESWT

    Use and Effectiveness of Electrosuit in Neurological Disorders: A Systematic Review with Clinical Implications

    No full text
    Electrical stimulation through surface electrodes is a non-invasive therapeutic technique used to improve voluntary motor control and reduce pain and spasticity in patients with central nervous system injuries. The Exopulse Mollii Suit (EMS) is a non-invasive full-body suit with integrated electrodes designed for self-administered electrical stimulation to reduce spasticity and promote flexibility. The EMS has been evaluated in several clinical trials with positive findings, indicating its potential in rehabilitation. This review investigates the effectiveness of the EMS for rehabilitation and its acceptability by patients. The literature was collected through several databases following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Positive effects of the garment on improving motor functions and reducing spasticity have been shown to be related to the duration of the administration period and to the dosage of the treatment, which, in turn, depend on the individual’s condition and the treatment goals. Moreover, patients reported wellbeing during stimulation and a muscle-relaxing effect on the affected limb. Although additional research is required to determine the efficacy of this device, the reviewed literature highlights the EMS potential to improve the motor capabilities of neurological patients in clinical practice
    corecore